如果我通过代码得到了点云slicing_cloud,如何改cloud = pcl.PointCloud.PointXYZ() if pcl.io.loadPCDFile('sll_M1.pcd', cloud) < 0: print('点云加载失败!!!') exit(-1)这段代码并用slicing_cloud替换sll_M1.pcd
时间: 2024-03-19 12:45:19 浏览: 64
如果您已经得到了点云 `slicing_cloud`,则可以使用以下代码将其转换为 PCL 的 `PointCloud.PointXYZ()` 格式,并且加载到内存中:
```python
import pcl
# 将点云转换为 PCL 格式
cloud = pcl.PointCloud.PointXYZ()
cloud.from_array(slicing_cloud.astype('float32'))
# 加载点云
if pcl.io.savePCDFileASCII('new_pcd_file.pcd', cloud) == -1:
print('点云保存失败!!!')
exit(-1)
```
其中,`slicing_cloud` 是您已经得到的点云数据,`astype('float32')` 是将数据类型转换为 `float32`,以便能够被 PCL 正确地加载。`new_pcd_file.pcd` 是您要保存的新的 PCD 文件名。请确保该文件名没有被占用,否则会出现保存失败的情况。
相关问题
cloud = o3d.io.read_point_cloud("Model.pcd") Delta = 0.01 dPlatform = 0.3 point_cloud = np.asarray(cloud.points) _, _, z_min = np.amin(point_cloud, axis=0) idx = [] for i in range(len(point_cloud)): index = np.floor((point_cloud[i][2] - z_min) / dPlatform) sliceMin = z_min + index * dPlatform if sliceMin <= point_cloud[i][2] < sliceMin + Delta: idx.append(i) slicing_cloud = (cloud.select_by_index(idx))这段代码获取了几个点云切片,如何改可以单独获得每个切片
可以尝试将获取切片的部分放在一个循环内,每次循环获取一个切片,将其存储到一个列表中。具体代码如下:
```
cloud = o3d.io.read_point_cloud("Model.pcd")
Delta = 0.01
dPlatform = 0.3
point_cloud = np.asarray(cloud.points)
_, _, z_min = np.amin(point_cloud, axis=0)
slicing_clouds = [] # 存储每个切片的列表
for index in range(int((np.max(point_cloud[:,2]) - z_min) / dPlatform)): # 遍历每个切片
idx = []
sliceMin = z_min + index * dPlatform # 当前切片的最小高度
for i in range(len(point_cloud)): # 获取当前切片中的点
if sliceMin <= point_cloud[i][2] < sliceMin + Delta:
idx.append(i)
slicing_clouds.append(cloud.select_by_index(idx)) # 将当前切片存储到列表中
```
这样,`slicing_clouds` 列表中的每个元素就是一个单独的切片点云了。可以通过 `slicing_clouds[i]` 获取第 i 个切片的点云。
帮我分析以下代码:class PConv(nn.Module): def __init__(self, dim, ouc, n_div=4, forward='split_cat'): super().__init__() self.dim_conv3 = dim // n_div self.dim_untouched = dim - self.dim_conv3 self.partial_conv3 = nn.Conv2d(self.dim_conv3, self.dim_conv3, 3, 1, 1, bias=False) self.conv = Conv(dim, ouc, k=1) if forward == 'slicing': self.forward = self.forward_slicing elif forward == 'split_cat': self.forward = self.forward_split_cat else: raise NotImplementedError def forward_slicing(self, x): # only for inference x = x.clone() # !!! Keep the original input intact for the residual connection later x[:, :self.dim_conv3, :, :] = self.partial_conv3(x[:, :self.dim_conv3, :, :]) x = self.conv(x) return x def forward_split_cat(self, x): # for training/inference x1, x2 = torch.split(x, [self.dim_conv3, self.dim_untouched], dim=1) x1 = self.partial_conv3(x1) x = torch.cat((x1, x2), 1) x = self.conv(x) return x
这段代码定义了一个名为 PConv 的类,该类继承自 nn.Module 类。该类的初始化函数接受三个参数:dim,ouc 和 n_div。其中,dim 表示输入特征图的通道数,ouc 表示输出特征图的通道数,n_div 表示将输入特征图的通道数分成几个部分。
在初始化函数中,首先计算了一个值 dim_conv3,表示将输入特征图的通道数分成的那一部分的通道数。然后,定义了一个 nn.Conv2d 类型的卷积层 partial_conv3,该层的输入通道数和输出通道数都是 dim_conv3,卷积核大小为 3,步长为 1,填充为 1,不使用偏置。接着,定义了一个 Conv 类型的卷积层 conv,该层的输入通道数为 dim,输出通道数为 ouc,卷积核大小为 1。
接下来,根据指定的 forward 参数值选择不同的前向传播函数。如果 forward 等于 'slicing',则使用 forward_slicing 函数;如果 forward 等于 'split_cat',则使用 forward_split_cat 函数;否则抛出 NotImplementedError 异常。
forward_slicing 函数接收一个输入张量 x,首先通过 x.clone() 将输入张量的副本保存下来,以便后面的残差连接使用。然后,将输入张量的前 dim_conv3 个通道切片出来,输入到 partial_conv3 卷积层中,得到一个输出张量,再将输出张量和输入张量的后面部分进行拼接,得到最终的输出张量。
forward_split_cat 函数也接收一个输入张量 x,首先通过 torch.split() 将输入张量分成两个部分,其中第一个部分包含前 dim_conv3 个通道,第二个部分包含剩下的通道。然后,将第一个部分输入到 partial_conv3 卷积层中,得到一个输出张量,再将输出张量和第二个部分进行拼接,得到最终的输出张量。
该类的主要作用是实现了一个部分卷积层,用于图像修复任务。这个部分卷积层可以在一定程度上保留图像的边缘信息,同时去除遮挡区域的噪声。
阅读全文