使用pytorch的胶囊网络代码及注释
时间: 2023-11-09 12:09:12 浏览: 166
以下是一个简单的 PyTorch 胶囊网络(Capsule Network)的实现代码,带有注释,可以帮助您了解其工作原理。这个代码基于 Hinton 的论文《Dynamic Routing Between Capsules》。
```python
import torch
import torch.nn.functional as F
class CapsuleLayer(torch.nn.Module):
"""
胶囊层
"""
def __init__(self, num_capsules, num_route_nodes, in_channels, out_channels):
super(CapsuleLayer, self).__init__()
self.num_route_nodes = num_route_nodes
self.num_capsules = num_capsules
self.in_channels = in_channels
self.out_channels = out_channels
# 胶囊的权重矩阵
self.W = torch.nn.Parameter(torch.randn(num_capsules, num_route_nodes, in_channels, out_channels))
def forward(self, x):
# x的shape: [batch_size, num_route_nodes, in_channels]
batch_size = x.size(0)
# x的形状需要扩展为 [batch_size, num_route_nodes, 1, in_channels, 1]
x = torch.stack([x] * self.num_capsules, dim=2).unsqueeze(4)
# 复制W以匹配x的shape
W = torch.cat([self.W] * batch_size, dim=0)
# 胶囊的预测值
u_hat = torch.matmul(W, x)
# 初始化b_ij,shape为 [batch_size, num_capsules, num_route_nodes, 1, 1]
b_ij = torch.zeros(1, self.num_capsules, self.num_route_nodes, 1, 1)
# 迭代动态路由
num_iterations = 3
for iteration in range(num_iterations):
# 计算c_ij
c_ij = F.softmax(b_ij, dim=1)
# 计算s_j = sum(c_ij*u_hat)
s_j = (c_ij * u_hat).sum(dim=2, keepdim=True)
# 计算v_j
v_j = self.squash(s_j)
# 更新b_ij
if iteration != num_iterations - 1:
a_ij = (u_hat * v_j).sum(dim=3, keepdim=True)
b_ij = b_ij + a_ij
# 返回胶囊的输出
return v_j.squeeze(3)
def squash(self, s):
"""
胶囊的激活函数
"""
squared_norm = (s ** 2).sum(dim=3, keepdim=True)
scale = squared_norm / (1 + squared_norm)
return scale * s / torch.sqrt(squared_norm)
class CapsuleNet(torch.nn.Module):
"""
胶囊网络
"""
def __init__(self):
super(CapsuleNet, self).__init__()
self.conv1 = torch.nn.Conv2d(in_channels=1, out_channels=256, kernel_size=9, stride=1)
self.primary_capsules = CapsuleLayer(num_capsules=8, num_route_nodes=-1, in_channels=256, out_channels=32)
self.digit_capsules = CapsuleLayer(num_capsules=10, num_route_nodes=32, in_channels=8, out_channels=16)
self.decoder = torch.nn.Sequential(
torch.nn.Linear(16 * 10, 512),
torch.nn.ReLU(inplace=True),
torch.nn.Linear(512, 1024),
torch.nn.ReLU(inplace=True),
torch.nn.Linear(1024, 784),
torch.nn.Sigmoid()
)
def forward(self, x):
x = self.conv1(x)
x = F.relu(x)
x = self.primary_capsules(x)
x = self.digit_capsules(x)
x = x.view(x.size(0), -1)
classes = (x ** 2).sum(dim=1) ** 0.5
classes = F.softmax(classes, dim=0)
_, max_length_indices = classes.max(dim=1)
masked = torch.autograd.Variable(torch.sparse.torch.eye(10))
if torch.cuda.is_available():
masked = masked.cuda()
masked = masked.index_select(dim=0, index=max_length_indices.squeeze(1).data)
reconstructions = self.decoder((x * masked[:, :, None]).view(x.size(0), -1))
return classes, reconstructions
```
这个代码实现了一个简单的 Capsule Network,包括一个卷积层、两个胶囊层和一个解码器。在前向传播过程中,输入首先通过卷积层和激活函数进行处理,然后通过两个胶囊层,其中第一个胶囊层生成8个胶囊,第二个胶囊层生成10个胶囊,每个胶囊的输出都是一个16维向量。最后,输出通过解码器进行重构,并返回类别概率和重构结果。
阅读全文