print('x方向信号:SNR={:.2f}dB, MSE={:.2f}, PSNR={:.2f}dB'.format(x_snr, x_mse, x_psnr)) print('y方向信号:SNR={:.2f}dB, MSE={:.2f}, PSNR={:.2f}dB'.format(y_snr, y_mse, y_psnr)) print('z方向信号:SNR={:.2f}dB, MSE={:.2f}, PSNR={:.2f}dB'.format(z_snr, z_mse, z_psnr))将输出的结果保存到csv文件里

时间: 2023-06-15 09:06:27 浏览: 41
可以使用Python自带的csv模块将结果保存到csv文件中。代码如下: ```python import csv # 将结果保存到csv文件中 with open('result.csv', 'w', newline='') as csvfile: writer = csv.writer(csvfile) writer.writerow(['方向', 'SNR(dB)', 'MSE', 'PSNR(dB)']) writer.writerow(['x', '{:.2f}'.format(x_snr), '{:.2f}'.format(x_mse), '{:.2f}'.format(x_psnr)]) writer.writerow(['y', '{:.2f}'.format(y_snr), '{:.2f}'.format(y_mse), '{:.2f}'.format(y_psnr)]) writer.writerow(['z', '{:.2f}'.format(z_snr), '{:.2f}'.format(z_mse), '{:.2f}'.format(z_psnr)]) ``` 这段代码首先创建一个csv文件,并将表头(方向、SNR(dB)、MSE、PSNR(dB))写入文件。然后将每个方向的结果写入csv文件中。注意需要使用`'{:.2f}'.format()`格式化输出结果,保留两位小数。最后关闭文件。
相关问题

import numpy as np import pandas as pd import cv2 # 读取csv文件 df = pd.read_csv("3c_left_1-6.csv", header=None) data = df.values # 定义高斯滤波器函数 def gaussian_filter(data, sigma): # 计算高斯核 size = int(sigma * 3) if size % 2 == 0: size += 1 x, y, z = np.meshgrid(np.linspace(-1, 1, size), np.linspace(-1, 1, size), np.linspace(-1, 1, size)) kernel = np.exp(-(x ** 2 + y ** 2 + z ** 2) / (2 * sigma ** 2)) kernel /= kernel.sum() # 使用高斯核进行滤波 filtered_data = np.zeros_like(data) for i in range(data.shape[0]): filtered_data[i] = cv2.filter2D(data[i], -1, kernel, borderType=cv2.BORDER_REFLECT) return filtered_data # 对x、y、z方向上的时序信号分别进行高斯滤波 sigma = 1.5 # 高斯核标准差 filtered_data = np.zeros_like(data) for i in range(data.shape[1]): filtered_data[:, i] = gaussian_filter(data[:, i], sigma) for i in range(data.shape[0]): filtered_data[i] = gaussian_filter(filtered_data[i], sigma) for i in range(data.shape[2]): filtered_data[:, :, i] = gaussian_filter(filtered_data[:, :, i], sigma) # 计算SNR、MSE、PSNR snr = 10 * np.log10(np.sum(data**2) / np.sum((data-filtered_data)**2)) mse = np.mean((data - filtered_data) ** 2) psnr = 10 * np.log10(np.max(data)**2 / mse) print("SNR: {:.2f} dB".format(snr)) print("MSE: {:.2f}".format(mse)) print("PSNR: {:.2f} dB".format(psnr)) # 保存csv文件 df_filtered = pd.DataFrame(filtered_data) df_filtered.to_csv("filtered_data.csv", index=False, header=False)

这段代码是一个数据处理的例子,包括读取csv文件、定义高斯滤波器函数、对x、y、z方向上的时序信号分别进行高斯滤波、计算SNR、MSE、PSNR等指标以及保存csv文件。具体解释如下: 1. 导入必要的库:numpy、pandas和cv2。 2. 使用pandas的read_csv函数读取名为"3c_left_1-6.csv"的csv文件,并将其转化为numpy数组。 3. 定义一个高斯滤波器函数,该函数用于计算高斯核并在给定数据上进行高斯滤波。高斯核的大小由标准差sigma与一个系数3相乘得到。函数内部使用numpy的meshgrid函数生成三维网格,然后计算三维高斯核。最后使用OpenCV的filter2D函数将高斯核应用于数据上。 4. 对x、y、z方向上的时序信号分别进行高斯滤波,将滤波后的数据存储在filtered_data数组中。 5. 计算SNR、MSE、PSNR等指标。SNR表示信噪比,用于衡量信号中存在的信号与噪声的比例。MSE表示均方误差,用于衡量滤波后的数据与原始数据之间的差异。PSNR表示峰值信噪比,用于衡量图像质量的好坏。 6. 使用pandas的DataFrame函数将滤波后的数据转换为DataFrame格式,并使用to_csv函数将其保存为名为"filtered_data.csv"的csv文件。 需要注意的是,这段代码仅仅是一个例子,具体的数据处理过程需要根据具体情况进行调整。

import numpy as np import pandas as pd from keras.models import Sequential from keras.layers import Dense, LSTM # 读取csv文件 data = pd.read_csv('3c_left_1-6.csv') # 将数据转换为numpy数组 data = np.array(data) data = data.reshape((data.shape[0], 1, data.shape[1])) # 获取数据的维度信息 n_samples, n_timesteps, n_features = data.shape # 定义模型 model = Sequential() model.add(LSTM(64, input_shape=(n_timesteps, n_features), return_sequences=True)) model.add(Dense(n_features)) # 编译模型 model.compile(loss='mse', optimizer='adam') # 训练模型 model.fit(data, data, epochs=1, batch_size=32) # 对数据进行去噪 denoised_data = model.predict(data) # 计算去噪后的SNR,MSE,PSNR snr = np.mean(np.power(data, 2)) / np.mean(np.power(data - denoised_data, 2)) mse = np.mean(np.power(data - denoised_data, 2)) psnr = 10 * np.log10((np.power(data.max(), 2) / mse)) print("Signal-to-Noise Ratio (SNR): {:.2f} dB".format(snr)) print("Mean Squared Error (MSE): {:.2f}".format(mse)) print("Peak Signal-to-Noise Ratio (PSNR): {:.2f} dB".format(psnr)) data = {'SNR': [snr], 'MSE': [mse], 'PSNR': [psnr]} df = pd.DataFrame(data) df.to_csv('indicator_lstm.csv', index=False) # 将结果保存为csv文件 denoised_data = pd.DataFrame(denoised_data.reshape(n_samples, n_timesteps * n_features)) denoised_data.to_csv('denoised_data_lstm.csv', index=False)为该代码添加防止过拟合

在LSTM层后添加一个Dropout层,可以帮助防止过拟合。例如,将代码修改为: ``` import numpy as np import pandas as pd from keras.models import Sequential from keras.layers import Dense, LSTM, Dropout # 读取csv文件 data = pd.read_csv('3c_left_1-6.csv') # 将数据转换为numpy数组 data = np.array(data) data = data.reshape((data.shape[0], 1, data.shape[1])) # 获取数据的维度信息 n_samples, n_timesteps, n_features = data.shape # 定义模型 model = Sequential() model.add(LSTM(64, input_shape=(n_timesteps, n_features), return_sequences=True)) model.add(Dropout(0.2)) # 添加Dropout层 model.add(Dense(n_features)) # 编译模型 model.compile(loss='mse', optimizer='adam') # 训练模型 model.fit(data, data, epochs=1, batch_size=32) # 对数据进行去噪 denoised_data = model.predict(data) # 计算去噪后的SNR,MSE,PSNR snr = np.mean(np.power(data, 2)) / np.mean(np.power(data - denoised_data, 2)) mse = np.mean(np.power(data - denoised_data, 2)) psnr = 10 * np.log10((np.power(data.max(), 2) / mse)) print("Signal-to-Noise Ratio (SNR): {:.2f} dB".format(snr)) print("Mean Squared Error (MSE): {:.2f}".format(mse)) print("Peak Signal-to-Noise Ratio (PSNR): {:.2f} dB".format(psnr)) data = {'SNR': [snr], 'MSE': [mse], 'PSNR': [psnr]} df = pd.DataFrame(data) df.to_csv('indicator_lstm.csv', index=False) # 将结果保存为csv文件 denoised_data = pd.DataFrame(denoised_data.reshape(n_samples, n_timesteps * n_features)) denoised_data.to_csv('denoised_data_lstm.csv', index=False) ``` 在这个例子中,我们添加了一个Dropout层,设置了dropout概率为0.2。这意味着在每个训练批次中,该层的20%神经元将随机失活。这有助于防止过拟合,提高模型的泛化能力。您还可以尝试不同的dropout概率来获得最佳的性能。

相关推荐

import numpy as np import pandas as pd from keras.models import Sequential from keras.layers import Dense, LSTM, Dropout from keras.callbacks import EarlyStopping # 读取csv文件 data = pd.read_csv('3c_left_1-6.csv') # 将数据转换为numpy数组 data = np.array(data) data = data.reshape((data.shape[0], 1, data.shape[1])) # 获取数据的维度信息 n_samples, n_timesteps, n_features = data.shape # 定义模型 model = Sequential() model.add(LSTM(64, input_shape=(n_timesteps, n_features), return_sequences=True)) model.add(Dropout(0.2)) # 添加Dropout层 model.add(Dense(n_features)) # 编译模型 model.compile(loss='mse', optimizer='adam') # 定义EarlyStopping回调函数 early_stopping = EarlyStopping(monitor='val_loss', min_delta=0.001, patience=5, mode='min', verbose=1) # 训练模型 model.fit(data, data, epochs=100, batch_size=32, validation_split=0.2, callbacks=[early_stopping]) # 对数据进行去噪 denoised_data = model.predict(data) # 计算去噪后的SNR,MSE,PSNR snr = np.mean(np.power(data, 2)) / np.mean(np.power(data - denoised_data, 2)) mse = np.mean(np.power(data - denoised_data, 2)) psnr = 10 * np.log10((np.power(data.max(), 2) / mse)) print("Signal-to-Noise Ratio (SNR): {:.2f} dB".format(snr)) print("Mean Squared Error (MSE): {:.2f}".format(mse)) print("Peak Signal-to-Noise Ratio (PSNR): {:.2f} dB".format(psnr)) # 将结果保存为csv文件 data = {'SNR': [snr], 'MSE': [mse], 'PSNR': [psnr]} df = pd.DataFrame(data) df.to_csv('indicator_lstm.csv', index=False) denoised_data = pd.DataFrame(denoised_data.reshape(n_samples, n_timesteps * n_features)) denoised_data.to_csv('denoised_data_lstm.csv', index=False)怎么减少神经元的个数

最新推荐

recommend-type

pre_o_1csdn63m9a1bs0e1rr51niuu33e.a

pre_o_1csdn63m9a1bs0e1rr51niuu33e.a
recommend-type

matlab建立计算力学课程的笔记和文件.zip

matlab建立计算力学课程的笔记和文件.zip
recommend-type

FT-Prog-v3.12.38.643-FTD USB 工作模式设定及eprom读写

FT_Prog_v3.12.38.643--FTD USB 工作模式设定及eprom读写
recommend-type

matlab基于RRT和人工势场法混合算法的路径规划.zip

matlab基于RRT和人工势场法混合算法的路径规划.zip
recommend-type

matlab基于matlab的两步定位软件定义接收机的开源GNSS直接位置估计插件模块.zip

matlab基于matlab的两步定位软件定义接收机的开源GNSS直接位置估计插件模块.zip
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

实现实时数据湖架构:Kafka与Hive集成

![实现实时数据湖架构:Kafka与Hive集成](https://img-blog.csdnimg.cn/img_convert/10eb2e6972b3b6086286fc64c0b3ee41.jpeg) # 1. 实时数据湖架构概述** 实时数据湖是一种现代数据管理架构,它允许企业以低延迟的方式收集、存储和处理大量数据。与传统数据仓库不同,实时数据湖不依赖于预先定义的模式,而是采用灵活的架构,可以处理各种数据类型和格式。这种架构为企业提供了以下优势: - **实时洞察:**实时数据湖允许企业访问最新的数据,从而做出更明智的决策。 - **数据民主化:**实时数据湖使各种利益相关者都可
recommend-type

2. 通过python绘制y=e-xsin(2πx)图像

可以使用matplotlib库来绘制这个函数的图像。以下是一段示例代码: ```python import numpy as np import matplotlib.pyplot as plt def func(x): return np.exp(-x) * np.sin(2 * np.pi * x) x = np.linspace(0, 5, 500) y = func(x) plt.plot(x, y) plt.xlabel('x') plt.ylabel('y') plt.title('y = e^{-x} sin(2πx)') plt.show() ``` 运行这段
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。