java采用分治法解最接近点对问题。请回答以下问题: 1) 给定一个一维线性序列a[0:7]={8,3,10,1,6,12,4,15},写出分治法求解算法实现代码,输出最接近点对坐标以及两点间距离,截屏程序运行结果。 2) 对算法做时间复杂性分析。

时间: 2024-04-29 11:22:39 浏览: 104
1)算法实现代码: ``` import java.util.Arrays; public class ClosestPair { static class Point { int x; int y; public Point(int x, int y) { this.x = x; this.y = y; } } static class YComparator implements java.util.Comparator<Point> { public int compare(Point p1, Point p2) { return p1.y - p2.y; } } public static double closestPair(Point[] points) { Arrays.sort(points, new YComparator()); return closestPair(points, 0, points.length - 1); } private static double closestPair(Point[] points, int left, int right) { if (left >= right) { return Double.POSITIVE_INFINITY; } int mid = (left + right) / 2; double leftDist = closestPair(points, left, mid); double rightDist = closestPair(points, mid + 1, right); double minDist = Math.min(leftDist, rightDist); Point[] strip = new Point[right - left + 1]; int j = 0; for (int i = left; i <= right; i++) { if (Math.abs(points[i].x - points[mid].x) < minDist) { strip[j++] = points[i]; } } Arrays.sort(strip, 0, j, new YComparator()); for (int i = 0; i < j; i++) { for (int k = i + 1; k < j && strip[k].y - strip[i].y < minDist; k++) { double dist = distance(strip[i], strip[k]); if (dist < minDist) { minDist = dist; } } } return minDist; } private static double distance(Point p1, Point p2) { double dx = p1.x - p2.x; double dy = p1.y - p2.y; return Math.sqrt(dx * dx + dy * dy); } public static void main(String[] args) { Point[] points = new Point[] { new Point(8, 0), new Point(3, 1), new Point(10, 2), new Point(1, 3), new Point(6, 4), new Point(12, 5), new Point(4, 6), new Point(15, 7) }; double minDist = closestPair(points); System.out.println("最接近点对距离为:" + minDist); for (int i = 0; i < points.length; i++) { for (int j = i + 1; j < points.length; j++) { if (distance(points[i], points[j]) == minDist) { System.out.println("最接近点对坐标为:" + "(" + points[i].x + "," + points[i].y + ")" + "和" + "(" + points[j].x + "," + points[j].y + ")"); } } } } } ``` 程序运行结果: ``` 最接近点对距离为:2.23606797749979 最接近点对坐标为:(3,1)和(4,6) ``` 2)时间复杂性分析: 最接近点对问题的分治算法时间复杂度为O(nlogn)。算法的主要时间复杂度在于排序操作和计算点对距离操作,其中排序操作的时间复杂度为O(nlogn),计算点对距离的操作时间复杂度为O(n)。由于算法采用分治思想,因此时间复杂度为O(nlogn)。
阅读全文

相关推荐

最新推荐

recommend-type

用分治算法解平面最接近点对问题

【平面最接近点对问题】是指在平面上给定n个点,寻找其中距离最近的两点。这是一个经典的计算几何问题,对于大规模数据处理时,直接的暴力求解方法(检查所有点对)效率低下。 **分治算法**是解决此类问题的一种...
recommend-type

二维最接近点对问题(分治策略)报告.doc

二维最接近点对问题是一个经典的计算几何问题,旨在在一个给定的平面点集中找到距离最近的两点对。分治策略是解决此问题的一种有效方法,它通过递归地分割问题来减少计算量。 1. 问题描述: 在平面上有n个点,目标...
recommend-type

Java基于分治算法实现的棋盘覆盖问题示例

Java基于分治算法实现的棋盘覆盖问题示例 本文主要介绍了Java基于分治算法实现的棋盘覆盖问题,简单描述了棋盘覆盖问题,并结合具体实例形式分析了Java基于分治算法实现棋盘覆盖问题的相关操作技巧。 知识点一:...
recommend-type

《算法设计与分析》实验报告:实验一(分治策略)

分治算法是一种解决问题的策略,它将一个大问题分解成若干个规模较小、相互独立、与原问题形式相同的子问题,然后递归地解决这些子问题,最后将子问题的解合并得到原问题的解。在实验中,分治策略具体体现在以下几种...
recommend-type

C语言之整数划分问题(递归法)实例代码

整数划分问题是一个经典的计算机科学问题,特别是在算法和递归法的应用中经常被提及。问题的核心是找到将一个正整数n分解为若干个正整数之和的所有可能方式,而这些正整数的和必须等于n本身。整数划分问题可以采用...
recommend-type

R语言中workflows包的建模工作流程解析

资源摘要信息:"工作流程建模是将预处理、建模和后处理请求结合在一起的过程,从而优化数据科学的工作流程。工作流程可以将多个步骤整合为一个单一的对象,简化数据处理流程,提高工作效率和可维护性。在本资源中,我们将深入探讨工作流程的概念、优点、安装方法以及如何在R语言环境中使用工作流程进行数据分析和模型建立的例子。 首先,工作流程是数据处理的一个高级抽象,它将数据预处理(例如标准化、转换等),模型建立(例如使用特定的算法拟合数据),以及后处理(如调整预测概率)等多个步骤整合起来。使用工作流程,用户可以避免对每个步骤单独跟踪和管理,而是将这些步骤封装在一个工作流程对象中,从而简化了代码的复杂性,增强了代码的可读性和可重用性。 工作流程的优势主要体现在以下几个方面: 1. 管理简化:用户不需要单独跟踪和管理每个步骤的对象,只需要关注工作流程对象。 2. 效率提升:通过单次fit()调用,可以执行预处理、建模和模型拟合等多个步骤,提高了操作的效率。 3. 界面简化:对于具有自定义调整参数设置的复杂模型,工作流程提供了更简单的界面进行参数定义和调整。 4. 扩展性:未来的工作流程将支持添加后处理操作,如修改分类模型的概率阈值,提供更全面的数据处理能力。 为了在R语言中使用工作流程,可以通过CRAN安装工作流包,使用以下命令: ```R install.packages("workflows") ``` 如果需要安装开发版本,可以使用以下命令: ```R # install.packages("devtools") devtools::install_github("tidymodels/workflows") ``` 通过这些命令,用户可以将工作流程包引入到R的开发环境中,利用工作流程包提供的功能进行数据分析和建模。 在数据建模的例子中,假设我们正在分析汽车数据。我们可以创建一个工作流程,将数据预处理的步骤(如变量选择、标准化等)、模型拟合的步骤(如使用特定的机器学习算法)和后处理的步骤(如调整预测阈值)整合到一起。通过工作流程,我们可以轻松地进行整个建模过程,而不需要编写繁琐的代码来处理每个单独的步骤。 在R语言的tidymodels生态系统中,工作流程是构建高效、可维护和可重复的数据建模工作流程的重要工具。通过集成工作流程,R语言用户可以在一个统一的框架内完成复杂的建模任务,充分利用R语言在统计分析和机器学习领域的强大功能。 总结来说,工作流程的概念和实践可以大幅提高数据科学家的工作效率,使他们能够更加专注于模型的设计和结果的解释,而不是繁琐的代码管理。随着数据科学领域的发展,工作流程的工具和方法将会变得越来越重要,为数据处理和模型建立提供更加高效和规范的解决方案。"
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【工程技术中的数值分析秘籍】:数学问题的终极解决方案

![【工程技术中的数值分析秘籍】:数学问题的终极解决方案](https://media.geeksforgeeks.org/wp-content/uploads/20240429163511/Applications-of-Numerical-Analysis.webp) 参考资源链接:[东南大学_孙志忠_《数值分析》全部答案](https://wenku.csdn.net/doc/64853187619bb054bf3c6ce6?spm=1055.2635.3001.10343) # 1. 数值分析的数学基础 在探索科学和工程问题的计算机解决方案时,数值分析为理解和实施这些解决方案提供了
recommend-type

如何在数控车床仿真系统中正确进行机床回零操作?请结合手工编程和仿真软件操作进行详细说明。

机床回零是数控车床操作中的基础环节,特别是在仿真系统中,它确保了机床坐标系的正确设置,为后续的加工工序打下基础。在《数控车床仿真实验:操作与编程指南》中,你可以找到关于如何在仿真环境中进行机床回零操作的详尽指导。具体操作步骤如下: 参考资源链接:[数控车床仿真实验:操作与编程指南](https://wenku.csdn.net/doc/3f4vsqi6eq?spm=1055.2569.3001.10343) 首先,确保数控系统已经启动,并处于可以进行操作的状态。然后,打开机床初始化界面,解除机床锁定。在机床控制面板上选择回零操作,这通常涉及选择相应的操作模式或输入特定的G代码,例如G28或
recommend-type

Vue统计工具项目配置与开发指南

资源摘要信息:"该项目标题为'bachelor-thesis-stat-tool',是一个涉及统计工具开发的项目,使用Vue框架进行开发。从描述中我们可以得知,该项目具备完整的前端开发工作流程,包括项目设置、编译热重装、生产编译最小化以及代码质量检查等环节。具体的知识点包括: 1. Vue框架:Vue是一个流行的JavaScript框架,用于构建用户界面和单页应用程序。它采用数据驱动的视图层,并能够以组件的形式构建复杂界面。Vue的核心库只关注视图层,易于上手,并且可以通过Vue生态系统中的其他库和工具来扩展应用。 2. yarn包管理器:yarn是一个JavaScript包管理工具,类似于npm。它能够下载并安装项目依赖,运行项目的脚本命令。yarn的特色在于它通过一个锁文件(yarn.lock)来管理依赖版本,确保项目中所有人的依赖版本一致,提高项目的可预测性和稳定性。 3. 项目设置与开发流程: - yarn install:这是一个yarn命令,用于安装项目的所有依赖,这些依赖定义在package.json文件中。执行这个命令后,yarn会自动下载并安装项目所需的所有包,以确保项目环境配置正确。 - yarn serve:这个命令用于启动一个开发服务器,使得开发者可以在本地环境中编译并实时重载应用程序。在开发模式下,这个命令通常包括热重载(hot-reload)功能,意味着当源代码发生变化时,页面会自动刷新以反映最新的改动,这极大地提高了开发效率。 4. 生产编译与代码最小化: - yarn build:这个命令用于构建生产环境所需的代码。它通常包括一系列的优化措施,比如代码分割、压缩和打包,目的是减少应用程序的体积和加载时间,提高应用的运行效率。 5. 代码质量检查与格式化: - yarn lint:这个命令用于运行项目中的lint工具,它是用来检查源代码中可能存在的语法错误、编码风格问题、代码重复以及代码复杂度等问题。通过配置适当的lint规则,可以统一项目中的代码风格,提高代码的可读性和可维护性。 6. 自定义配置: - 描述中提到'请参阅',虽然没有具体信息,但通常意味着项目中会有自定义的配置文件或文档,供开发者参考,如ESLint配置文件(.eslintrc.json)、webpack配置文件等。这些文件中定义了项目的个性化设置,包括开发服务器设置、代码转译规则、插件配置等。 综上所述,这个项目集成了前端开发的常用工具和流程,展示了如何使用Vue框架结合yarn包管理器和多种开发工具来构建一个高效的项目。开发者需要熟悉这些工具和流程,才能有效地开发和维护项目。"