cannot import name 'ChainDataset' from 'torch.utils.data.dataset'
时间: 2023-11-13 13:05:21 浏览: 173
这个错误通常是因为你正在使用的PyTorch版本不支持ChainDataset类。ChainDataset是从1.8版本中引入的,如果你的版本低于1.8,则会出现这个错误。
请尝试升级你的PyTorch版本,方法是在终端中运行以下命令:
```
pip install torch --upgrade
```
如果你已经安装了PyTorch,可以使用以下命令来检查你的版本:
```
import torch
print(torch.__version__)
```
如果你仍然遇到问题,请尝试使用其他数据集类,如TensorDataset或Subset等。
相关问题
from torch.utils.data import Dataset from torch.utils.data import DataLoader
这两个类分别是 PyTorch 中用于构建数据集和数据加载器的类。Dataset 类是一个抽象类,需要用户自己实现其中的 \_\_len\_\_ 和 \_\_getitem\_\_ 方法,用于返回数据集的大小和指定索引的数据项。DataLoader 类则是用于从数据集中按批次加载数据的类,可以指定批次大小、是否打乱数据集顺序、是否使用多进程等参数。一般情况下,我们可以先通过 Dataset 类将数据集转换为 PyTorch 可以处理的格式,然后再通过 DataLoader 类将其加载到内存中,以进行后续的模型训练或推理。
import torch import torch.nn.functional as F import torch.optim as optim from torchvision import transforms from torchvision import datasets from torch.utils. data import DataI oader 补全代码
下面是一个基本的 PyTorch MNIST 数据集训练代码示例,包括数据加载、模型定义、优化器和损失函数的定义以及训练过程。
```
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torchvision import transforms
from torchvision import datasets
from torch.utils.data import DataLoader
# 定义数据预处理
transform = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.1307,), (0.3081,))
])
# 加载数据集
train_dataset = datasets.MNIST('data', train=True, download=True, transform=transform)
test_dataset = datasets.MNIST('data', train=False, download=True, transform=transform)
train_loader = DataLoader(train_dataset, batch_size=64, shuffle=True)
test_loader = DataLoader(test_dataset, batch_size=64, shuffle=False)
# 定义模型
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
self.conv1 = nn.Conv2d(1, 10, kernel_size=5)
self.conv2 = nn.Conv2d(10, 20, kernel_size=5)
self.fc1 = nn.Linear(320, 50)
self.fc2 = nn.Linear(50, 10)
def forward(self, x):
x = F.relu(F.max_pool2d(self.conv1(x), 2))
x = F.relu(F.max_pool2d(self.conv2(x), 2))
x = x.view(-1, 320)
x = F.relu(self.fc1(x))
x = self.fc2(x)
return F.log_softmax(x, dim=1)
net = Net()
# 定义优化器和损失函数
optimizer = optim.SGD(net.parameters(), lr=0.01, momentum=0.5)
criterion = nn.CrossEntropyLoss()
# 训练模型
def train(epoch):
net.train()
for batch_idx, (data, target) in enumerate(train_loader):
optimizer.zero_grad()
output = net(data)
loss = criterion(output, target)
loss.backward()
optimizer.step()
if batch_idx % 10 == 0:
print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(
epoch, batch_idx * len(data), len(train_loader.dataset),
100. * batch_idx / len(train_loader), loss.item()))
def test():
net.eval()
test_loss = 0
correct = 0
with torch.no_grad():
for data, target in test_loader:
output = net(data)
test_loss += criterion(output, target)
pred = output.argmax(dim=1, keepdim=True)
correct += pred.eq(target.view_as(pred)).sum().item()
test_loss /= len(test_loader.dataset)
print('\nTest set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n'.format(
test_loss, correct, len(test_loader.dataset),
100. * correct / len(test_loader.dataset)))
for epoch in range(1, 5):
train(epoch)
test()
```
这是一个简单的卷积神经网络模型,用于对 MNIST 手写数字进行分类。训练过程中使用了交叉熵损失函数和随机梯度下降优化器。
阅读全文