在R语言中,如何实现XGBoost十折交叉验证网格调参,利用xgb.cv函数
时间: 2024-03-18 19:40:39 浏览: 107
在R语言中,可以使用xgb.cv函数来实现XGBoost的十折交叉验证网格调参。具体步骤如下:
1. 安装并加载xgboost库:
```r
install.packages("xgboost")
library(xgboost)
```
2. 准备数据集,将特征矩阵和标签向量分别存储为x和y:
```r
data(iris)
x <- iris[, 1:4]
y <- iris[, 5]
```
3. 定义网格搜索的参数范围,例如max_depth、learning_rate、nrounds等:
```r
param <- list(
objective = "multi:softmax",
eval_metric = "mlogloss",
num_class = 3,
max_depth = c(3, 4, 5),
eta = c(0.01, 0.05, 0.1),
nrounds = 100
)
```
4. 使用xgb.cv函数进行十折交叉验证:
```r
cv <- xgb.cv(
params = param,
data = xgb.DMatrix(x, label = y),
nfold = 10,
nrounds = param$nrounds,
early_stopping_rounds = 10,
verbose = 0
)
```
5. 根据交叉验证结果,确定最优参数组合:
```r
best_param <- cv$evaluation_log[which.min(cv$evaluation_log$test_mlogloss_mean), ]
```
其中,test_mlogloss_mean表示测试集的平均多分类对数损失。
6. 使用最优参数训练模型:
```r
model <- xgb.train(
params = param,
data = xgb.DMatrix(x, label = y),
nrounds = param$nrounds,
verbose = 0
)
```
7. 对新数据进行预测:
```r
new_data <- x[1:5, ]
pred <- predict(model, xgb.DMatrix(new_data))
```
阅读全文