dtr =tree.DecisionTreeRegressor(criterion = 'mae',max_depth = 5) dtr.fit(Xteain,Ytrain) pred = dtr.predict(Xtest) fig = plt.figure(figsize=(15.6,7.2)) ax = fig.add_subplot(111) s1 = ax.scatter(range(len(pred)),pred,facecolors="red",label='预测') s2 = ax.scatter(range(len(Ytest))),Ytest,facecolors="blue",label='实际') plt.ylabel('电力负荷',fontsize = 15) plt.xlabel('样本编号',fontsize = 15) plt.legend()哪里错了
时间: 2024-03-27 21:35:40 浏览: 112
在第11行代码中,多了一个右括号,导致代码语法错误。正确的代码应该是:
```
dtr = tree.DecisionTreeRegressor(criterion='mae', max_depth=5)
dtr.fit(Xtrain, Ytrain)
pred = dtr.predict(Xtest)
fig = plt.figure(figsize=(15.6, 7.2))
ax = fig.add_subplot(111)
s1 = ax.scatter(range(len(pred)), pred, facecolors="red", label='预测')
s2 = ax.scatter(range(len(Ytest)), Ytest, facecolors="blue", label='实际')
plt.ylabel('电力负荷', fontsize=15)
plt.xlabel('样本编号', fontsize=15)
plt.legend()
```
另外,代码中没有显示 Xtrain 和 Ytrain 是如何定义的,如果这些变量没有被正确定义,代码也会出错。
相关问题
wine_data=data.iloc[:-5,:] wine_target=data.iloc[-5:,:] from sklearn.tree import DecisionTreeClassifier from sklearn.model_selection import train_test_split from sklearn.linear_model import LogisticRegression from sklearn.model_selection import train_test_split x=wine_data.iloc[:,1:].values y=wine_data.iloc[:,0].values x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.3,random_state=42) #建立模型 dtc=DecisionTreeClassifier(criterion='entropy')#基于熵评价纯度 dtc.fit(x_train,y_train)#拟合数据 y_pre=dtc.predict(x_test) y_pre dtc.predict(wine_target.iloc[:,1:].values) from sklearn.metrics import mean_squared_error #先获得预测的y值y_pre _pre=dtc.Oredlct(y tact mean_squared_error(y_test,y_pre) print("决策树 训练精度:“,dtc.score(x_test,y_test)) print("决策树 泛化精度:“,dtc.score(x_train,y_train)) #KNN最近邻分类算法 from sklearn.neighbors import KNeighborsClassifier from sklearn.datasets import load_digits from sklearn.model_selection import train_test_split -wine_data.ilocl:,1:].values y=wine_data.iloc[:,0].values state=125) dtr=KNeighborsClassifier() dtr.fit(x_train,y_train) dtr.score(x_test,y_test) model_knn=KNeighborsClassifier(n_neighbors=5)#看5个近邻的类别确定分类 model knn.fit(x_train,y_train) #预测 model_knn.predict(x_test) dtr.predict(wine_target.iloc[:,1:].values) neighbors = 3 from sklearn.neighbors import KNeighborsClassifier knn = KNeighborsClassifier(neighbors) knn.fit(x_train,y_train) print("KNN 训练精度:“,knn.score(x_test,y_test)) print("KNN泛化精度: knn.score(x_train,y_train))代码解释
这段代码涉及了三种分类算法:决策树、最近邻分类算法和KNN算法。
首先,代码将数据集分为wine_data和wine_target两部分,其中wine_data是训练集,wine_target是测试集。接着,使用train_test_split函数将wine_data划分为训练集和测试集,其中测试集占总样本的30%。
其次,使用DecisionTreeClassifier类来实现决策树分类算法,其中criterion='entropy'表示使用熵来评价纯度。使用fit函数拟合数据,使用predict函数对测试集进行预测,使用mean_squared_error函数计算预测值和真实值之间的均方误差,使用score函数计算训练集和测试集的分类精度。
接着,使用KNeighborsClassifier类来实现最近邻分类算法和KNN算法,其中n_neighbors表示选取的最近邻的个数。使用fit函数拟合数据,使用predict函数对测试集进行预测,使用score函数计算训练集和测试集的分类精度。
最后,输出训练集和测试集的分类精度。
def train(): Dtr, Val, Dte = load_data() print('train...') epoch_num = 30 best_model = None min_epochs = 5 min_val_loss = 5 model = cnn().to(device) optimizer = optim.Adam(model.parameters(), lr=0.0008) criterion = nn.CrossEntropyLoss().to(device) # criterion = nn.BCELoss().to(device) for epoch in tqdm(range(epoch_num), ascii=True): train_loss = [] for batch_idx, (data, target) in enumerate(Dtr, 0): try: data, target = Variable(data).to(device), Variable(target.long()).to(device) # target = target.view(target.shape[0], -1) # print(target) optimizer.zero_grad() output = model(data) # print(output) loss = criterion(output, target) loss.backward() optimizer.step() train_loss.append(loss.cpu().item()) except: continue # validation val_loss = get_val_loss(model, Val) model.train() if epoch + 1 > min_epochs and val_loss < min_val_loss: min_val_loss = val_loss best_model = copy.deepcopy(model) torch.save(best_model.state_dict(), r"E:\dataset\Airbnb\training_data\model\cnn.pkl")
这段代码是一个简单的CNN模型的训练过程。它的输入是经过处理的数据集 Dtr, Val, Dte,其中 Dtr 是训练集,Val 是验证集,Dte 是测试集。模型的优化器采用 Adam 算法,损失函数采用交叉熵损失。
在每个 epoch 中,模型会对训练集 Dtr 进行迭代,计算损失并更新参数。同时,模型会在验证集 Val 上计算损失,如果当前的验证损失比之前最小的验证损失要小,则更新最小验证损失和最佳模型参数。当 epoch 数量达到最大值或者验证损失连续 min_epochs 次未下降时,训练过程会结束。
最后,最佳模型的参数会被保存到本地文件中。
阅读全文