dtr =tree.DecisionTreeRegressor(criterion = 'mae',max_depth = 5) dtr.fit(Xteain,Ytrain) pred = dtr.predict(Xtest) fig = plt.figure(figsize=(15.6,7.2)) ax = fig.add_subplot(111) s1 = ax.scatter(range(len(pred)),pred,facecolors="red",label='预测') s2 = ax.scatter(range(len(Ytest))),Ytest,facecolors="blue",label='实际') plt.ylabel('电力负荷',fontsize = 15) plt.xlabel('样本编号',fontsize = 15) plt.legend()哪里错了
时间: 2024-03-27 14:35:40 浏览: 109
在第11行代码中,多了一个右括号,导致代码语法错误。正确的代码应该是:
```
dtr = tree.DecisionTreeRegressor(criterion='mae', max_depth=5)
dtr.fit(Xtrain, Ytrain)
pred = dtr.predict(Xtest)
fig = plt.figure(figsize=(15.6, 7.2))
ax = fig.add_subplot(111)
s1 = ax.scatter(range(len(pred)), pred, facecolors="red", label='预测')
s2 = ax.scatter(range(len(Ytest)), Ytest, facecolors="blue", label='实际')
plt.ylabel('电力负荷', fontsize=15)
plt.xlabel('样本编号', fontsize=15)
plt.legend()
```
另外,代码中没有显示 Xtrain 和 Ytrain 是如何定义的,如果这些变量没有被正确定义,代码也会出错。
相关问题
wine_data=data.iloc[:-5,:] wine_target=data.iloc[-5:,:] from sklearn.tree import DecisionTreeClassifier from sklearn.model_selection import train_test_split from sklearn.linear_model import LogisticRegression from sklearn.model_selection import train_test_split x=wine_data.iloc[:,1:].values y=wine_data.iloc[:,0].values x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.3,random_state=42) #建立模型 dtc=DecisionTreeClassifier(criterion='entropy')#基于熵评价纯度 dtc.fit(x_train,y_train)#拟合数据 y_pre=dtc.predict(x_test) y_pre dtc.predict(wine_target.iloc[:,1:].values) from sklearn.metrics import mean_squared_error #先获得预测的y值y_pre _pre=dtc.Oredlct(y tact mean_squared_error(y_test,y_pre) print("决策树 训练精度:“,dtc.score(x_test,y_test)) print("决策树 泛化精度:“,dtc.score(x_train,y_train)) #KNN最近邻分类算法 from sklearn.neighbors import KNeighborsClassifier from sklearn.datasets import load_digits from sklearn.model_selection import train_test_split -wine_data.ilocl:,1:].values y=wine_data.iloc[:,0].values state=125) dtr=KNeighborsClassifier() dtr.fit(x_train,y_train) dtr.score(x_test,y_test) model_knn=KNeighborsClassifier(n_neighbors=5)#看5个近邻的类别确定分类 model knn.fit(x_train,y_train) #预测 model_knn.predict(x_test) dtr.predict(wine_target.iloc[:,1:].values) neighbors = 3 from sklearn.neighbors import KNeighborsClassifier knn = KNeighborsClassifier(neighbors) knn.fit(x_train,y_train) print("KNN 训练精度:“,knn.score(x_test,y_test)) print("KNN泛化精度: knn.score(x_train,y_train))代码解释
这段代码涉及了三种分类算法:决策树、最近邻分类算法和KNN算法。
首先,代码将数据集分为wine_data和wine_target两部分,其中wine_data是训练集,wine_target是测试集。接着,使用train_test_split函数将wine_data划分为训练集和测试集,其中测试集占总样本的30%。
其次,使用DecisionTreeClassifier类来实现决策树分类算法,其中criterion='entropy'表示使用熵来评价纯度。使用fit函数拟合数据,使用predict函数对测试集进行预测,使用mean_squared_error函数计算预测值和真实值之间的均方误差,使用score函数计算训练集和测试集的分类精度。
接着,使用KNeighborsClassifier类来实现最近邻分类算法和KNN算法,其中n_neighbors表示选取的最近邻的个数。使用fit函数拟合数据,使用predict函数对测试集进行预测,使用score函数计算训练集和测试集的分类精度。
最后,输出训练集和测试集的分类精度。
def load_data(file_name): df = pd.read_csv('data/new_data/' + file_name, encoding='gbk') columns = df.columns df.fillna(df.mean(), inplace=True) return df class MyDataset(Dataset): def __init__(self, data): self.data = data def __getitem__(self, item): return self.data[item] def __len__(self): return len(self.data) def nn_seq_us(B): print('data processing...') dataset = load_data() # split train = dataset[:int(len(dataset) * 0.6)] val = dataset[int(len(dataset) * 0.6):int(len(dataset) * 0.8)] test = dataset[int(len(dataset) * 0.8):len(dataset)] m, n = np.max(train[train.columns[1]]), np.min(train[train.columns[1]]) def process(data, batch_size): load = data[data.columns[1]] load = load.tolist() data = data.values.tolist() load = (load - n) / (m - n) seq = [] for i in range(len(data) - 24): train_seq = [] train_label = [] for j in range(i, i + 24): x = [load[j]] train_seq.append(x) # for c in range(2, 8): # train_seq.append(data[i + 24][c]) train_label.append(load[i + 24]) train_seq = torch.FloatTensor(train_seq) train_label = torch.FloatTensor(train_label).view(-1) seq.append((train_seq, train_label)) # print(seq[-1]) seq = MyDataset(seq) seq = DataLoader(dataset=seq, batch_size=batch_size, shuffle=False, num_workers=0, drop_last=True) return seq Dtr = process(train, B) Val = process(val, B) Dte = process(test, B) return Dtr, Val, Dte, m, n这是关于什么的代码
这是一个关于神经网络序列预测的代码,它将数据集加载并进行预处理,然后将其分为训练、验证和测试集。代码中的 load_data 函数用于加载数据文件,MyDataset 类用于创建数据集对象,nn_seq_us 函数则用于对数据进行预处理并将其转换为 PyTorch 数据加载器对象。最后,该函数返回训练、验证和测试数据集对象,以及数据的最大值和最小值。
阅读全文