读取UCI的adult数据集,用pyspark转化为DataFrame,对其中六个连续型变量进行PCA主成分分析,通过setK()方法将主成分数量设为3,把连续型的特征向量转化成一个3维的主成分,在此基础上采用支持向量机(SVM)模型预测居民收入是否超过50K并对Test数据集进行验证,最后利用CrossValidator确定最优的参数,包括最优主成分PCA的维数、分类器自身的参数等,给出上述过程所有python代码并详细解释每步作用
时间: 2024-02-25 09:53:40 浏览: 112
首先需要下载UCI的adult数据集并安装pyspark库,然后可以按照以下步骤进行操作:
1. 导入必要的库
```python
from pyspark.ml.feature import PCA, VectorAssembler
from pyspark.ml.classification import LinearSVC
from pyspark.ml.tuning import CrossValidator, ParamGridBuilder
from pyspark.ml.evaluation import BinaryClassificationEvaluator
```
2. 读取数据集
```python
data = spark.read.format("csv").option("header", "true").load("path/to/adult.csv")
```
3. 数据预处理
将六个连续型变量提取出来并转化为特征向量:
```python
assembler = VectorAssembler(inputCols=["age", "fnlwgt", "education_num", "capital_gain", "capital_loss", "hours_per_week"], outputCol="features")
data = assembler.transform(data)
```
4. 主成分分析
```python
pca = PCA(k=3, inputCol="features", outputCol="pca_features")
model = pca.fit(data)
data = model.transform(data)
```
5. 划分训练集和测试集
```python
train_data, test_data = data.randomSplit([0.8, 0.2], seed=123)
```
6. 构建SVM模型
```python
svm = LinearSVC(labelCol="label", featuresCol="pca_features")
```
7. 参数调优
```python
evaluator = BinaryClassificationEvaluator(rawPredictionCol="rawPrediction", labelCol="label", metricName="areaUnderROC")
paramGrid = ParamGridBuilder().addGrid(svm.regParam, [0.1, 0.01]).addGrid(svm.maxIter, [10, 100]).addGrid(pca.k, [2, 3]).build()
cv = CrossValidator(estimator=svm, evaluator=evaluator, estimatorParamMaps=paramGrid, numFolds=3)
cv_model = cv.fit(train_data)
```
8. 预测
```python
predictions = cv_model.transform(test_data)
```
9. 评估
```python
print("Area under ROC curve: ", evaluator.evaluate(predictions))
```
阅读全文