YOLOv5训练自己数据集
时间: 2023-12-03 11:40:22 浏览: 351
以下是使用YOLOv5训练自己数据集的步骤:
1. 准备数据集
首先需要准备自己的数据集,包括图片和标注文件。标注文件可以使用常见的格式,如VOC、COCO等。
2. 安装YOLOv5
在使用YOLOv5之前,需要先安装YOLOv5。可以使用以下命令进行安装:
```shell
git clone https://github.com/ultralytics/yolov5.git
cd yolov5
pip install -r requirements.txt
```
3. 数据集转换
如果数据集的格式不是YOLOv5所支持的格式,需要将其转换成YOLOv5所支持的格式。可以使用YOLOv5提供的脚本进行转换。例如,如果数据集的格式是VOC,可以使用以下命令进行转换:
```shell
python3 ./yolov5/scripts/voc2yolo.py --data_path /path/to/data
```
4. 配置训练参数
在训练模型之前,需要配置训练参数。可以在YOLOv5的配置文件中进行配置。例如,可以设置训练的批次大小、学习率、迭代次数等参数。
5. 训练模型
配置好训练参数后,可以使用以下命令开始训练模型:
```shell
python3 train.py --data /path/to/data --cfg ./models/yolov5s.yaml --weights '' --batch-size 16
```
6. 测试模型
训练完成后,可以使用以下命令测试模型:
```shell
python3 detect.py --source /path/to/test/images --weights /path/to/best/weights.pt --conf 0.4
```
阅读全文