bch(63,51,2)码encode过程用python实现,生成多项式为1010100111001
时间: 2024-09-13 13:14:41 浏览: 48
BCH码是一种纠错码,它可以纠正多个错误。在您的例子中,我们有一个BCH(63, 51, 2)码,这表示它是一个长度为63位的码字,其中51位用于信息,剩下的位用于奇偶校验位,它可以纠正两个错误。生成多项式为1010100111001,这是一个12阶多项式,意味着它有13个非零系数(包括最高项系数1)。
在Python中实现BCH码的编码过程可以按照以下步骤:
1. 将信息多项式除以生成多项式,得到余数。
2. 将余数的位数补充到信息多项式后,确保信息位和校验位之和等于码字长度。
以下是一个简单的Python实现:
```python
def bch_encode(info_poly, gen_poly, m, t):
"""
BCH encode a polynomial
:param info_poly: Information polynomial (coefficient list, from highest degree to lowest)
:param gen_poly: Generator polynomial (coefficient list, from highest degree to lowest)
:param m: Field size (2^m elements)
:param t: Number of errors to correct
:return: Encoded polynomial (coefficient list)
"""
# Step 1: Multiply the information polynomial by x^(n-k), where n is the code length
# and k is the number of information bits.
# We also need to add the n-k zeros (for the parity bits) to the end of the polynomial.
n = (1 << m) - 1
k = n - len(gen_poly) + 1
new_poly = info_poly + [0] * (n - k)
# Step 2: Divide the new polynomial by the generator polynomial and get the remainder.
remainder = new_poly % gen_poly
# Step 3: Add the remainder to the new polynomial to get the encoded polynomial.
encoded_poly = [x ^ y for x, y in zip(new_poly, remainder)]
return encoded_poly
# Example usage:
# The generator polynomial coefficient list, for the polynomial G(x) = x^12 + x^11 + x^9 + x^7 + x^4 + x^3 + x^2 + 1
gen_poly = [1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 1, 1, 1]
# Information polynomial coefficient list (coefficient from highest degree to lowest)
info_poly = [1, 0, 1, 0, 1] # Example: x^4 + x^2 + 1
# The field size and number of errors to correct
m = 6 # Since the code length is 63 = 2^6 - 1
t = 2
# Encode the information polynomial
encoded_poly = bch_encode(info_poly, gen_poly, m, t)
print("Encoded polynomial:", encoded_poly)
```
在这个例子中,我们首先创建了一个信息多项式`info_poly`和生成多项式`gen_poly`。然后我们调用`bch_encode`函数来执行编码过程。注意,上述代码仅作为示例,实际使用时可能需要根据具体情况(比如信息多项式的具体值和场的大小)进行调整。
阅读全文