使用sklearn实现knn算法,并利用已知标签的鸢尾花数据对模型进行训练,再预测未知标签的鸢尾花数据的类别。
时间: 2024-09-12 11:11:24 浏览: 70
在Python中,我们可以使用scikit-learn库(sklearn)来实现K近邻(KNN)算法。以下是基本步骤:
1. **导入所需的库**:
```python
from sklearn import datasets
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.neighbors import KNeighborsClassifier
from sklearn.metrics import accuracy_score
```
2. **加载鸢尾花数据集**:
```python
iris = datasets.load_iris()
```
3. **预处理数据**:通常我们会标准化特征值,因为KNN算法对于特征尺度敏感。
```python
X = iris.data
y = iris.target
scaler = StandardScaler()
X_scaled = scaler.fit_transform(X)
```
4. **分割数据集为训练集和测试集**:
```python
X_train, X_test, y_train, y_test = train_test_split(X_scaled, y, test_size=0.2, random_state=42)
```
5. **创建并训练KNN分类器**:
```python
knn = KNeighborsClassifier(n_neighbors=5) # 选择合适的邻居数
knn.fit(X_train, y_train)
```
6. **进行预测**:
```python
y_pred = knn.predict(X_test)
```
7. **评估模型性能**:
```python
accuracy = accuracy_score(y_test, y_pred)
print(f"Accuracy: {accuracy}")
```
8. **预测未知数据类别**:
```python
# 假设我们有新的未标记鸢尾花数据点
new_data = [[...]] # 这里应该填入新的观测值,同样需要经过标准化
new_data_scaled = scaler.transform(new_data)
predicted_class = knn.predict(new_data_scaled)
print(f"The predicted class for the new data is: {predicted_class}")
```
阅读全文
相关推荐
![-](https://img-home.csdnimg.cn/images/20241231045053.png)
![-](https://img-home.csdnimg.cn/images/20241231045053.png)
![-](https://img-home.csdnimg.cn/images/20241231045053.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![pdf](https://img-home.csdnimg.cn/images/20241231044930.png)
![docx](https://img-home.csdnimg.cn/images/20241231044901.png)
![py](https://img-home.csdnimg.cn/images/20250102104920.png)
![pdf](https://img-home.csdnimg.cn/images/20241231044930.png)
![-](https://img-home.csdnimg.cn/images/20241231045053.png)
![-](https://img-home.csdnimg.cn/images/20241231044930.png)
![-](https://img-home.csdnimg.cn/images/20241231044930.png)
![-](https://img-home.csdnimg.cn/images/20241231045053.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)