生成利用paddlets预测未来几个月的时序预测代码
时间: 2024-03-07 16:54:02 浏览: 80
以下是使用PaddlePaddle进行时序预测的代码示例,可以根据历史数据预测未来几个月的趋势:
```python
import paddle.fluid as fluid
import numpy as np
# 准备数据
train_data = np.array([[1, 2, 3, 4, 5, 6, 7, 8, 9, 10],
[2, 4, 6, 8, 10, 12, 14, 16, 18, 20],
[3, 6, 9, 12, 15, 18, 21, 24, 27, 30]], dtype='float32')
x_train = train_data[:-1].reshape(1, 3, 9)
y_train = train_data[1:].reshape(1, 3, 9)
# 定义模型
x = fluid.data(name='x', shape=[None, 3, 9], dtype='float32')
y = fluid.data(name='y', shape=[None, 3, 9], dtype='float32')
lstm = fluid.layers.DynamicRNN()
with lstm.block():
current_word = lstm.step_input(x)
hidden = lstm.memory(init=fluid.layers.zeros(shape=[1, 3, 9], dtype='float32'))
lstm_out, lstm_hidden = fluid.layers.lstm_cell(current_word, hidden, 9)
lstm.step_output(lstm_out)
lstm.update_memory(hidden, lstm_hidden)
fc = fluid.layers.fc(input=lstm_out, size=9, act=None)
cost = fluid.layers.mean(fluid.layers.square_error_cost(fc, y))
# 定义训练过程
adam = fluid.optimizer.AdamOptimizer()
adam.minimize(cost)
# 开始训练
place = fluid.CPUPlace()
exe = fluid.Executor(place)
exe.run(fluid.default_startup_program())
train_reader = paddle.batch(paddle.reader.shuffle(paddle.dataset.uci_housing.train(), buf_size=500),
batch_size=64)
feeder = fluid.DataFeeder(place=place, feed_list=[x, y])
for pass_id in range(50):
for batch_id, data in enumerate(train_reader()):
train_cost = exe.run(fluid.default_main_program(),
feed=feeder.feed(data),
fetch_list=[cost])
if batch_id % 50 == 0:
print("Pass:%d, Batch:%d, Cost:%0.5f" % (pass_id, batch_id, np.array(train_cost[0])))
```
在训练完成后,使用该模型对未来几个月的数据进行预测,可以先准备好最后几个月的真实数据,然后将其作为模型的输入,预测出未来几个月的趋势。
阅读全文