abaqus二次开发python

时间: 2024-06-17 21:04:06 浏览: 22
Abaqus是一种非常强大的有限元分析软件,可以通过Python进行二次开发,方便用户根据自己的需要进行定制和扩展。Python是一种高级编程语言,易于学习和使用,并且可以与许多其他软件进行集成。在Abaqus中,Python脚本可以用来完成以下任务: 1. 定义材料和截面属性; 2. 定义加载和约束条件; 3. 定义模型几何形状; 4. 控制Abaqus分析进程; 5. 提取结果数据并进行后处理。 在Abaqus中使用Python进行二次开发的步骤如下: 1. 编写Python脚本:使用文本编辑器编写Python脚本,定义需要执行的任务; 2. 启动Abaqus CAE:打开Abaqus CAE软件,在"File"菜单中选择"Run Script",选择之前编写的Python脚本,执行该脚本; 3. 查看结果:执行完脚本后,可以查看Abaqus的输出结果和后处理结果。
相关问题

abaqus二次开发python实例

### 回答1: Abaqus是一种流行的有限元分析软件,它提供了丰富的二次开发接口,使得用户可以通过Python等脚本语言进行二次开发。 以下是一个Abaqus二次开发Python实例,该实例将在Abaqus中创建一个梁模型并执行分析,最后输出节点位移数据。请注意,以下示例仅供参考,实际情况需要根据具体需求进行调整和修改。 ``` # 导入必要的模块 from abaqus import * from abaqusConstants import * from caeModules import * from driverUtils import executeOnCaeStartup executeOnCaeStartup() # 创建模型和部件 myModel = mdb.Model(name='beamModel') mySketch = myModel.ConstrainedSketch(name='beamSketch', sheetSize=200.0) mySketch.Line(point1=(0.0, 0.0), point2=(100.0, 0.0)) myPart = myModel.Part(name='beamPart', dimensionality=THREE_D, type=DEFORMABLE_BODY) myPart.BaseSolidExtrude(sketch=mySketch, depth=10.0) # 定义材料属性和截面属性 myMaterial = myModel.Material(name='steel') myMaterial.Elastic(table=((200E9, 0.3),)) mySection = myModel.HomogeneousSolidSection(name='beamSection', material='steel', thickness=1.0) # 创建装配体和边界条件 myAssembly = myModel.rootAssembly myInstance = myAssembly.Instance(name='beamInstance', part=myPart, dependent=ON) myAssembly.regenerate() myAssembly.Set(name='fixedEnd', faces=myInstance.faces.getByBoundingBox(xMin=0.0, xMax=0.1, yMin=-10.0, yMax=10.0, zMin=-10.0, zMax=10.0)) myAssembly.Set(name='loadedEnd', faces=myInstance.faces.getByBoundingBox(xMin=99.9, xMax=100.0, yMin=-10.0, yMax=10.0, zMin=-10.0, zMax=10.0)) myModel.EncastreBC(name='fixedBC', createStepName='Initial', region=myAssembly.sets['fixedEnd']) myModel.DisplacementBC(name='loadedBC', createStepName='Initial', region=myAssembly.sets['loadedEnd'], u1=1.0) # 定义分析步 myModel.StaticStep(name='beamLoad', previous='Initial') # 应用截面属性和边界条件 myPart.SectionAssignment(region=myPart.cells, sectionName='beamSection') myAssembly.regenerate() # 执行分析 jobName = 'beamAnalysis' mdb.Job(name=jobName, model='beamModel').submit() mdb.jobs[jobName].waitForCompletion() # 输出节点位移数据 odb = session.openOdb(name=jobName + '.odb') displacement = odb.steps['beamLoad'].frames[-1].fieldOutputs['U'] for value in displacement.values: print(value.nodeLabel, value.data) odb.close() ``` 上述代码将创建一个简单的梁模型,并执行静力分析,最后输出节点位移数据。您可以根据自己的需求和实际情况进行修改和扩展Abaqus是一种强大的有限元分析软件,它支持使用Python进行二次开发。以下是一个简单的Python脚本示例,它可以用来在Abaqus中创建一个平面应力的模型,并添加节点和单元: ```python from abaqus import * from abaqusConstants import * # 创建模型和部件 myModel = mdb.Model(name='Plate') myPart = myModel.Part(name='Part-1', dimensionality=2, type=DEFORMABLE_PLANE_STRAIN) # 定义材料属性和截面属性 myMaterial = myModel.Material(name='Steel') myMaterial.Elastic(table=((200E3, 0.3), )) mySection = myPart.HomogeneousSolidSection(name='Section-1', material='Steel', thickness=0.01) # 创建节点 myPart.DatumPointByCoordinate(coords=(0.0, 0.0)) myPart.DatumPointByCoordinate(coords=(1.0, 0.0)) myPart.DatumPointByCoordinate(coords=(1.0, 1.0)) myPart.DatumPointByCoordinate(coords=(0.0, 1.0)) # 创建单元 myPart.Line(point1=myPart.datums[1].id, point2=myPart.datums[2].id) myPart.Line(point1=myPart.datums[2].id, point2=myPart.datums[3].id) myPart.Line(point1=myPart.datums[3].id, point2=myPart.datums[4].id) myPart.Line(point1=myPart.datums[4].id, point2=myPart.datums[1].id) myPart.WirePolyLine(points=(myPart.datums[1], myPart.datums[2], myPart.datums[3], myPart.datums[4])) myPart.ShellFaceByEdges(edges=myPart.edges) # 创建荷载和边界条件 myModel.StaticStep(name='Step-1', previous='Initial') myModel.DisplacementBC(name='BC-1', createStepName='Step-1', region=myPart.sets['Wire-1'], u1=UNSET, u2=0.0) myModel.Pressure(name='Load-1', createStepName='Step-1', region=myPart.faces, magnitude=1.0) # 运行分析 myJob = mdb.Job(name='PlateJob', model='Plate') myJob.submit() myJob.waitForCompletion() ``` 以上代码中,`myModel`代表Abaqus模型,`myPart`代表Abaqus模型中的一个部件。在创建部件后,我们定义了材料属性和截面属性,并创建了四个节点和四条线段,最终使用这些节点和线段创建了一个四边形单元。在单元创建后,我们添加了边界条件和荷载,并运行了静态分析。 ### 回答2: Abaqus二次开发Python是指通过Python脚本对Abaqus进行二次开发,实现自动化分析、批量处理等功能。Python作为一种易学易用的高级编程语言,广泛应用于工程科学和计算机领域,为Abaqus二次开发提供了极大的便利。 下面是一个简单的Abaqus二次开发Python实例,用于自动化网格划分和材料特性定义: ``` from abaqus import * from abaqusConstants import * import regionToolset # 定义模型和部件 myModel = mdb.Model(name='myModel') myPart = myModel.Part(name='myPart', dimensionality=TWO_D_PLANAR, type=DEFORMABLE_BODY) # 定义网格划分 mySketch = myPart.MakeSketch(name='mySketch', sheetSize=200) mySketch.Rectangle(point1=(0, 0), point2=(100, 50)) myPart.PartitionFaceBySketch(faces=myPart.faces, sketch=mySketch) # 定义材料 myMaterial = myModel.Material(name='myMaterial') myMaterial.Elastic(table=((200E3,0.3),)) # 定义截面属性 mySection = myModel.HomogeneousSolidSection(name='mySection', material='myMaterial') # 定义单元网格 myPart.SetMeshControls(elemShape=QUAD, regions=(myPart.faces,), technique=SWEEP) myPart.setElementType(elemTypes=(ElemType(elemCode=DC2D4, elemLibrary=STANDARD),), regions=(myPart.faces,), elemShape=QUAD) # 生成单元网格 myPart.generateMesh() # 定义载荷和约束 myAssembly = myModel.rootAssembly myInstance = myAssembly.Instance(name='myInstance', part=myPart) myAssembly.Set(faces=myInstance.faces.findAt(((50,25),)), name='Load') myModel.EncastreBC(name='Fixed', createStepName='Initial', region=myInstance.faces.findAt(((0,0),))) # 定义分析步 myModel.StaticStep(name='LoadStep', previous='Initial') myModel.DisplacementBC(name='Disp', createStepName='LoadStep', region=myInstance.faces.findAt(((0,0),)), u1=UNSET, u2=0.0, u3=UNSET, ur1=UNSET, ur2=UNSET, ur3=UNSET, amplitude=UNSET, fixed=OFF, distributionType=UNIFORM, fieldName='', localCsys=None) # 定义工作底面 v = myInstance.vertices verts = v.getByBoundingBox(0, 35, 0, 40) region = regionToolset.Region(vertices=verts) myModel.DisplacementBC(name='clamp', createStepName='LoadStep', region=region, u1=0.0, u2=0.0, u3=0.0, ur1=0.0, ur2=0.0, ur3=0.0, amplitude=UNSET, fixed=OFF, distributionType=UNIFORM, fieldName='', localCsys=None) # 运行分析 myJob = mdb.Job(name='myJob', model='myModel') myJob.submit() myJob.waitForCompletion() ``` 以上代码创建了一个有限元模型,定义了网格划分、材料特性、载荷和约束,并执行了静态分析。通过Abaqus二次开发Python,用户可以灵活地实现各种自动化分析、批量处理等功能,提高工作效率和精度。 ### 回答3: Abaqus是一款强大的有限元分析软件,它支持二次开发,用户可以使用Python语言进行定制化的开发。下面通过一个实例来介绍如何使用Python二次开发Abaqus。 假设我们需要对Abaqus中的材料进行批量处理,我们可以通过编写Python脚本来实现此功能。以下为具体步骤: 1. 创建一个新的Python脚本 我们可以在任何文本编辑器中创建一个新的Python脚本。为了方便,我们将脚本保存在Abaqus工作目录下。 2. 导入Abaqus相关的模块 为了使用Abaqus的API,我们需要导入相关的模块。以下是我们需要导入的模块: ```python from abaqus import * from abaqusConstants import * from part import * from material import * ``` 以上模块分别导入了Abaqus的主要API、常量、零件和材料相关的类。 3. 定义一个函数来创建材料 我们可以在Python脚本中定义一个函数来创建材料。以下是示例函数的代码: ```python def createMaterial(name, density, young_modulus, poisson_ratio): mdb.models['Model-1'].Material(name=name) mdb.models['Model-1'].materials[name].Density(definition=density) mdb.models['Model-1'].materials[name].Elastic(table=((young_modulus, poisson_ratio), )) ``` 以上函数需要四个参数:名称、密度、杨氏模量和泊松比。函数的主要功能是创建一个新材料,并将其密度和弹性模量设置为提供的值。 4. 在主程序中调用函数 在主程序中,我们可以调用上述函数来创建我们需要的材料。以下是示例代码: ```python # 创建材料列表 materials = [('Aluminum', '2700 kg/m^3', 70e9, 0.35), ('Steel', '7800 kg/m^3', 200e9, 0.3)] # 循环创建材料 for name, density, young_modulus, poisson_ratio in materials: createMaterial(name, density, young_modulus, poisson_ratio) ``` 以上代码使用一个元组列表来包含我们需要创建的材料信息。然后,它循环遍历此列表,并为每个材料调用createMaterial函数。 5. 保存和运行脚本 完成上述步骤后,我们就可以保存并运行Python脚本了。在Abaqus中选择“File”->“Run Script”,并选择我们刚刚编写的脚本。脚本将自动运行,并根据我们的要求创建材料。 通过以上示例,我们可以看到通过Python二次开发Abaqus,我们可以快速地批量处理模型中的材料、零件等信息。这种定制化的开发使得Abaqus可以更好地满足用户的需求。

abaqus python 二次开发攻略

Abaqus是一款强大的有限元分析软件,其Python二次开发功能使得用户可以通过编写Python脚本来实现自定义的功能和高效的自动化分析过程。下面是使用Abaqus Python二次开发的攻略: 1. 熟悉Abaqus的Python接口:了解Abaqus提供的Python API,它包含了各种用于模型和分析的类和函数。可以通过查阅Abaqus Python手册等文档来学习。 2. 学习Python编程基础:在进行Abaqus Python二次开发之前,需要掌握一定的Python编程基础。学习Python的语法、流程控制、函数、类等基本知识,以及Python的常用库,如numpy、matplotlib等。 3. 开发前的准备工作:在开始开发之前,需要明确所需的功能和目标。对于需要操作的模型和数据结构进行分析,确定所需的类和函数。 4. 编写Python脚本:使用所学的Python知识和Abaqus提供的API,编写Python脚本来实现自定义的功能。可以通过创建新的模型、修改已有模型、设置边界条件、运行分析等来完成具体任务。 5. 脚本的调试和测试:在编写完成脚本后,对其进行调试和测试。可以使用Abaqus提供的交互式Python环境,逐步执行和调试脚本,确保其正确性和可靠性。 6. 实施和应用:在脚本经过验证后,可以将其应用于实际的工程项目中。通过使用自定义的脚本,可以提高工作效率,减少重复性工作,并实现更灵活和高级的分析需求。 总的来说,Abaqus Python二次开发需要具备Python编程基础和对Abaqus软件的熟悉程度。通过合理利用Abaqus提供的Python API,可以灵活地定制和自动化分析过程,提高工作效率和分析能力。

相关推荐

最新推荐

recommend-type

利用迪杰斯特拉算法的全国交通咨询系统设计与实现

全国交通咨询模拟系统是一个基于互联网的应用程序,旨在提供实时的交通咨询服务,帮助用户找到花费最少时间和金钱的交通路线。系统主要功能包括需求分析、个人工作管理、概要设计以及源程序实现。 首先,在需求分析阶段,系统明确了解用户的需求,可能是针对长途旅行、通勤或日常出行,用户可能关心的是时间效率和成本效益。这个阶段对系统的功能、性能指标以及用户界面有明确的定义。 概要设计部分详细地阐述了系统的流程。主程序流程图展示了程序的基本结构,从开始到结束的整体运行流程,包括用户输入起始和终止城市名称,系统查找路径并显示结果等步骤。创建图算法流程图则关注于核心算法——迪杰斯特拉算法的应用,该算法用于计算从一个节点到所有其他节点的最短路径,对于求解交通咨询问题至关重要。 具体到源程序,设计者实现了输入城市名称的功能,通过 LocateVex 函数查找图中的城市节点,如果城市不存在,则给出提示。咨询钱最少模块图是针对用户查询花费最少的交通方式,通过 LeastMoneyPath 和 print_Money 函数来计算并输出路径及其费用。这些函数的设计体现了算法的核心逻辑,如初始化每条路径的距离为最大值,然后通过循环更新路径直到找到最短路径。 在设计和调试分析阶段,开发者对源代码进行了严谨的测试,确保算法的正确性和性能。程序的执行过程中,会进行错误处理和异常检测,以保证用户获得准确的信息。 程序设计体会部分,可能包含了作者在开发过程中的心得,比如对迪杰斯特拉算法的理解,如何优化代码以提高运行效率,以及如何平衡用户体验与性能的关系。此外,可能还讨论了在实际应用中遇到的问题以及解决策略。 全国交通咨询模拟系统是一个结合了数据结构(如图和路径)以及优化算法(迪杰斯特拉)的实用工具,旨在通过互联网为用户提供便捷、高效的交通咨询服务。它的设计不仅体现了技术实现,也充分考虑了用户需求和实际应用场景中的复杂性。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【实战演练】基于TensorFlow的卷积神经网络图像识别项目

![【实战演练】基于TensorFlow的卷积神经网络图像识别项目](https://img-blog.csdnimg.cn/20200419235252200.png?x-oss-process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L3FxXzM3MTQ4OTQw,size_16,color_FFFFFF,t_70) # 1. TensorFlow简介** TensorFlow是一个开源的机器学习库,用于构建和训练机器学习模型。它由谷歌开发,广泛应用于自然语言
recommend-type

CD40110工作原理

CD40110是一种双四线双向译码器,它的工作原理基于逻辑编码和译码技术。它将输入的二进制代码(一般为4位)转换成对应的输出信号,可以控制多达16个输出线中的任意一条。以下是CD40110的主要工作步骤: 1. **输入与编码**: CD40110的输入端有A3-A0四个引脚,每个引脚对应一个二进制位。当你给这些引脚提供不同的逻辑电平(高或低),就形成一个四位的输入编码。 2. **内部逻辑处理**: 内部有一个编码逻辑电路,根据输入的四位二进制代码决定哪个输出线应该导通(高电平)或保持低电平(断开)。 3. **输出**: 输出端Y7-Y0有16个,它们分别与输入的编码相对应。当特定的
recommend-type

全国交通咨询系统C++实现源码解析

"全国交通咨询系统C++代码.pdf是一个C++编程实现的交通咨询系统,主要功能是查询全国范围内的交通线路信息。该系统由JUNE于2011年6月11日编写,使用了C++标准库,包括iostream、stdio.h、windows.h和string.h等头文件。代码中定义了多个数据结构,如CityType、TrafficNode和VNode,用于存储城市、交通班次和线路信息。系统中包含城市节点、交通节点和路径节点的定义,以及相关的数据成员,如城市名称、班次、起止时间和票价。" 在这份C++代码中,核心的知识点包括: 1. **数据结构设计**: - 定义了`CityType`为short int类型,用于表示城市节点。 - `TrafficNodeDat`结构体用于存储交通班次信息,包括班次名称(`name`)、起止时间(原本注释掉了`StartTime`和`StopTime`)、运行时间(`Time`)、目的地城市编号(`EndCity`)和票价(`Cost`)。 - `VNodeDat`结构体代表城市节点,包含了城市编号(`city`)、火车班次数(`TrainNum`)、航班班次数(`FlightNum`)以及两个`TrafficNodeDat`数组,分别用于存储火车和航班信息。 - `PNodeDat`结构体则用于表示路径中的一个节点,包含城市编号(`City`)和交通班次号(`TraNo`)。 2. **数组和变量声明**: - `CityName`数组用于存储每个城市的名称,按城市编号进行索引。 - `CityNum`用于记录城市的数量。 - `AdjList`数组存储各个城市的线路信息,下标对应城市编号。 3. **算法与功能**: - 系统可能实现了Dijkstra算法或类似算法来寻找最短路径,因为有`MinTime`和`StartTime`变量,这些通常与路径规划算法有关。 - `curPath`可能用于存储当前路径的信息。 - `SeekCity`函数可能是用来查找特定城市的函数,其参数是一个城市名称。 4. **编程语言特性**: - 使用了`#define`预处理器指令来设置常量,如城市节点的最大数量(`MAX_VERTEX_NUM`)、字符串的最大长度(`MAX_STRING_NUM`)和交通班次的最大数量(`MAX_TRAFFIC_NUM`)。 - `using namespace std`导入标准命名空间,方便使用iostream库中的输入输出操作。 5. **编程实践**: - 代码的日期和作者注释显示了良好的编程习惯,这对于代码维护和团队合作非常重要。 - 结构体的设计使得数据组织有序,方便查询和操作。 这个C++代码实现了全国交通咨询系统的核心功能,涉及城市节点管理、交通班次存储和查询,以及可能的路径规划算法。通过这些数据结构和算法,用户可以查询不同城市间的交通信息,并获取最优路径建议。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

【实战演练】使用Seaborn和Plotly进行数据可视化项目

![【实战演练】使用Seaborn和Plotly进行数据可视化项目](https://ask.qcloudimg.com/http-save/yehe-5669851/lifus0nfda.jpeg) # 1. 数据可视化的基础** 数据可视化是指将数据转换为图形或图表,以帮助人们理解和解释数据。它是一种强大的工具,可以揭示数据中的模式、趋势和异常情况,从而帮助人们做出更好的决策。 数据可视化有许多不同的类型,包括条形图、折线图、散点图和饼图。每种类型都有其独特的优点和缺点,具体选择哪种类型取决于数据类型和要传达的信息。 在创建数据可视化时,重要的是要考虑以下因素: * **受众:**
recommend-type

Python的六种数据类型

Python是一种动态类型的高级编程语言,它的六种基本数据类型包括: 1. **数字类型(Numeric Types)**:主要有整型(int)、浮点型(float)、复数型(complex)。整型用于表示整数值,浮点型用于存储小数,复数型用于处理复数。 2. **字符串类型(String Type)**:用单引号('')或双引号("")包围的文本序列,用来存储文本数据。 3. **布尔类型(Boolean Type)**:只有两个值,True和False,表示逻辑判断的结果。 4. **列表类型(List Type)**:有序的可变序列,可以包含不同类型的元素。 5. **元组类型
recommend-type

DFT与FFT应用:信号频谱分析实验

"数字信号处理仿真实验教程,主要涵盖DFT(离散傅里叶变换)和FFT(快速傅里叶变换)的应用,适用于初学者进行频谱分析。" 在数字信号处理领域,DFT(Discrete Fourier Transform)和FFT(Fast Fourier Transform)是两个至关重要的概念。DFT是将离散时间序列转换到频域的工具,而FFT则是一种高效计算DFT的方法。在这个北京理工大学的实验中,学生将通过实践深入理解这两个概念及其在信号分析中的应用。 实验的目的在于: 1. 深化对DFT基本原理的理解,这包括了解DFT如何将时域信号转化为频域表示,以及其与连续时间傅里叶变换(DTFT)的关系。DFT是DTFT在有限个等间隔频率点上的取样,这有助于分析有限长度的离散信号。 2. 应用DFT来分析信号的频谱特性,这对于识别信号的频率成分至关重要。在实验中,通过计算和可视化DFT的结果,学生可以观察信号的幅度谱和相位谱,从而揭示信号的频率组成。 3. 通过实际操作,深入理解DFT在频谱分析中的作用,以及如何利用它来解释现实世界的现象并解决问题。 实验内容分为几个部分: (1)首先,给出了一个5点序列x,通过计算DFT并绘制幅度和相位图,展示了DFT如何反映信号的幅度和相位特性。 (2)然后,使用相同序列x,但这次通过FFT进行计算,并用茎图展示结果。FFT相比于DFT提高了计算效率,尤其是在处理大数据集时。 (3)进一步扩展,序列x通过添加零填充至128点,再次进行FFT计算。这样做可以提高频率分辨率,使得频谱分析更为精确。 (4)最后,通过一个包含两种正弦波的11点序列,演示了DFT如何提供DTFT的近似,当N增大时,DFT的结果更接近于DTFT。 实验通过MATLAB代码实现,学生可以在实际操作中熟悉这些概念,从而增强对数字信号处理理论的理解。通过这些实验,学生不仅能够掌握DFT和FFT的基本运算,还能学会如何利用它们来分析和解析复杂的信号结构。
recommend-type

关系数据表示学习

关系数据卢多维奇·多斯桑托斯引用此版本:卢多维奇·多斯桑托斯。关系数据的表示学习机器学习[cs.LG]。皮埃尔和玛丽·居里大学-巴黎第六大学,2017年。英语。NNT:2017PA066480。电话:01803188HAL ID:电话:01803188https://theses.hal.science/tel-01803188提交日期:2018年HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaireUNIVERSITY PIERRE和 MARIE CURIE计算机科学、电信和电子学博士学院(巴黎)巴黎6号计算机科学实验室D八角形T HESIS关系数据表示学习作者:Ludovic DOS SAntos主管:Patrick GALLINARI联合主管:本杰明·P·伊沃瓦斯基为满足计算机科学博士学位的要求而提交的论文评审团成员:先生蒂埃里·A·退休记者先生尤尼斯·B·恩