flink 并行度 checkpoint
时间: 2023-07-05 17:35:33 浏览: 145
在 Flink 中,Checkpoint 是一种机制,用于实现流处理的容错和恢复。Checkpoint 会将流处理任务的状态信息保存到持久化存储中,以便在出现故障时可以恢复任务并继续处理数据。而并行度和Checkpoint之间的关系是,每个并行任务都会独立地生成和管理自己的Checkpoint。
下面是一个简单的示例,展示了如何在 Flink 中设置并行度和Checkpoint:
```java
// 创建 ExecutionEnvironment
StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
// 设置并行度为 4
env.setParallelism(4);
// 开启Checkpoint,设置Checkpoint间隔为 10 秒
env.enableCheckpointing(10000);
// 设置Checkpoint模式为 Exactly Once
env.getCheckpointConfig().setCheckpointingMode(CheckpointingMode.EXACTLY_ONCE);
// 设置Checkpoint超时时间为 1 分钟
env.getCheckpointConfig().setCheckpointTimeout(60000);
// 设置同时进行的最大Checkpoint数量为 2
env.getCheckpointConfig().setMaxConcurrentCheckpoints(2);
// 设置Checkpoint存储的位置
env.setStateBackend(new FsStateBackend("file:///tmp/checkpoints"));
// 定义数据源,执行计算操作
DataStream<String> input = env.socketTextStream("localhost", 9999);
input.flatMap(new FlatMapFunction<String, String>() {
@Override
public void flatMap(String s, Collector<String> collector) throws Exception {
collector.collect(s.toUpperCase());
}
}).print();
// 启动任务
env.execute("Flink Checkpoint Demo");
```
在这个示例中,我们首先创建了一个 `StreamExecutionEnvironment` 实例,并设置了并行度为 4。接着开启了Checkpoint,并设置了Checkpoint间隔为 10 秒,Checkpoint模式为 Exactly Once,Checkpoint超时时间为 1 分钟,同时进行的最大Checkpoint数量为 2,Checkpoint存储的位置为本地文件系统 `/tmp/checkpoints`。最后定义了一个数据源,并执行计算操作。
总之,Flink 中的并行度和Checkpoint是密切相关的,每个并行任务都需要独立地生成和管理自己的Checkpoint,以保证流处理任务的容错和恢复能力。
阅读全文