const sPowerSEQ code sSEQ_S5_to_G3[] = { /* Function Delay Wait */ /* Hook x 1ms status */ { 0x0000, 0, 0, }, /* Dummy Require */ { GO_INIT_G3, 0, 0, }, /* Sequence End */ };

时间: 2024-02-14 14:26:56 浏览: 21
根据你提供的代码片段,这是一个用于电源序列管理的代码段。它定义了一个名为 `sSEQ_S5_to_G3` 的电源序列数组,该数组用于从 S5 状态切换到 G3 状态。 这段代码中的每个条目代表了一个特定的操作,每个操作都有一个对应的延迟时间(Delay)和等待状态(Wait)。其中包括一个函数(Function)和相关参数。 以下是代码中定义的操作: - GO_INIT_G3: 切换到从 S5 到 G3 的初始化序列。 每个操作的延迟时间(Delay)表示在执行下一个操作之前需要等待的时间,单位为毫秒。等待状态(Wait)表示在延迟时间结束后,是否需要等待状态改变才能执行下一个操作。 从代码中可以看出,这个电源序列数组只包含一个操作 `GO_INIT_G3`,它代表了从 S5 到 G3 的初始化序列。具体的初始化操作和功能需要根据代码中定义的相关函数来确定,这些函数可能在其他地方有进一步的定义和实现。 这段代码很可能是在电源管理方面的固件或驱动程序中使用的,用于控制计算机的电源状态切换和初始化操作,特别是从 S5 到 G3 状态的转换。
相关问题

const sPowerSEQ code sSEQ_S3_to_S0[]

根据你提供的代码片段,这是一个定义为 `sPowerSEQ` 类型的名为 `sSEQ_S3_to_S0` 的代码数组。这个数组是用来管理从 S3 状态到 S0 状态的电源序列的。 该数组中的每个元素都是一个结构体,包含以下字段: - `Function`:表示要执行的操作或功能的标识符。 - `Delay`:表示在执行下一个操作之前需要等待的延迟时间,以毫秒为单位。 - `Wait`:表示在延迟时间结束后,是否需要等待状态改变才能执行下一个操作。 每个元素代表了从 S3 到 S0 过程中的一个阶段或操作。通过按顺序执行数组中的元素,可以依次执行相应的操作来实现从 S3 到 S0 的状态转换。 你提供的代码片段中,`sSEQ_S3_to_S0` 数组包含了一系列操作的定义,这些操作可能与电源管理、系统初始化或硬件设置相关。具体的操作和功能需要根据代码中定义的 `Function` 标识符来确定,这些标识符可能在其他地方有进一步的定义和实现。

parasolid 的PK_linkage_m PK_ERROR_code_t PK_TOPOL_render_line ( /* received */ const int /*n_topols*/, /* number of entities */ const PK_TOPOL_t /*topols*/[], /* entities to rendered */ const PK_TRANSF_t /*topol_transfs*/[], /* applied transformations */ const PK_TRANSF_t /*view_transf*/, /* viewing transformation */ const PK_TOPOL_render_line_o_t * /*options*/ /* options structure [PF] */ ); 函数

`PK_TOPOL_render_line` 是一个在 Parasolid 几何核心库中的函数,用于绘制线条。下面是函数的详细信息: ```C++ PK_ERROR_code_t PK_TOPOL_render_line( const int n_topols, // 实体数量 const PK_TOPOL_t topols[], // 待绘制的实体 const PK_TRANSF_t topol_transfs[], // 实体的变换矩阵 const PK_TRANSF_t view_transf, // 视角变换矩阵 const PK_TOPOL_render_line_o_t* options // 绘制选项 ); ``` 函数的输入参数如下: - `n_topols`:待绘制实体的数量。 - `topols[]`:待绘制的实体数组。 - `topol_transfs[]`:每个实体的变换矩阵。 - `view_transf`:视角变换矩阵。 - `options`:绘制选项。 该函数的返回值为 `PK_ERROR_code_t` 类型,表示函数执行的结果。 该函数可以绘制多个线条,实体可以是线段、多段线等。在使用该函数时,需要先初始化绘图设备,然后调用该函数进行绘制。在调用该函数时,需要指定待绘制实体的数量、实体数组、每个实体的变换矩阵和视角变换矩阵等参数。同时,可以通过 `options` 参数指定绘制选项,比如线条颜色、线宽等等。具体的使用方法可以参考 Parasolid 的官方文档和示例代码。

相关推荐

ulint* rec_get_offsets_func( /*=================*/ const rec_t* rec, /*!< in: physical record */ const dict_index_t* index, /*!< in: record descriptor */ ulint* offsets,/*!< in/out: array consisting of offsets[0] allocated elements, or an array from rec_get_offsets(), or NULL */ ulint n_fields,/*!< in: maximum number of initialized fields (ULINT_UNDEFINED if all fields) */ #ifdef UNIV_DEBUG const char* file, /*!< in: file name where called */ ulint line, /*!< in: line number where called */ #endif /* UNIV_DEBUG */ mem_heap_t** heap) /*!< in/out: memory heap */ { ulint n; ulint size; ut_ad(rec); ut_ad(index); ut_ad(heap); if (dict_table_is_comp(index->table)) { switch (UNIV_EXPECT(rec_get_status(rec), REC_STATUS_ORDINARY)) { case REC_STATUS_ORDINARY: n = dict_index_get_n_fields(index); break; case REC_STATUS_NODE_PTR: /* Node pointer records consist of the uniquely identifying fields of the record followed by a child page number field. */ n = dict_index_get_n_unique_in_tree_nonleaf(index) + 1; break; case REC_STATUS_INFIMUM: case REC_STATUS_SUPREMUM: /* infimum or supremum record */ n = 1; break; default: ut_error; return(NULL); } } else { n = rec_get_n_fields_old(rec); } if (UNIV_UNLIKELY(n_fields < n)) { n = n_fields; } /* The offsets header consists of the allocation size at offsets[0] and the REC_OFFS_HEADER_SIZE bytes. */ size = n + (1 + REC_OFFS_HEADER_SIZE); if (UNIV_UNLIKELY(!offsets) || UNIV_UNLIKELY(rec_offs_get_n_alloc(offsets) < size)) { if (UNIV_UNLIKELY(!*heap)) { *heap = mem_heap_create_at(size * sizeof(ulint), file, line); } offsets = static_cast( mem_heap_alloc(*heap, size * sizeof(ulint))); rec_offs_set_n_alloc(offsets, size); } rec_offs_set_n_fields(offsets, n); rec_init_offsets(rec, index, offsets); return(offsets); }帮我以注释的形式解释下这段代码吧

最新推荐

recommend-type

实验五、运算符重载 复数+-*/ 大数+-*/

BigInteger operator +(const BigInteger& B); BigInteger operator -(const BigInteger& B); BigInteger operator *(const BigInteger& B); BigInteger operator /(const BigInteger& B); c++,大数类,完整程序...
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

MATLAB柱状图在信号处理中的应用:可视化信号特征和频谱分析

![matlab画柱状图](https://img-blog.csdnimg.cn/3f32348f1c9c4481a6f5931993732f97.png) # 1. MATLAB柱状图概述** MATLAB柱状图是一种图形化工具,用于可视化数据中不同类别或组的分布情况。它通过绘制垂直条形来表示每个类别或组中的数据值。柱状图在信号处理中广泛用于可视化信号特征和进行频谱分析。 柱状图的优点在于其简单易懂,能够直观地展示数据分布。在信号处理中,柱状图可以帮助工程师识别信号中的模式、趋势和异常情况,从而为信号分析和处理提供有价值的见解。 # 2. 柱状图在信号处理中的应用 柱状图在信号处理
recommend-type

HSV转为RGB的计算公式

HSV (Hue, Saturation, Value) 和 RGB (Red, Green, Blue) 是两种表示颜色的方式。下面是将 HSV 转换为 RGB 的计算公式: 1. 将 HSV 中的 S 和 V 值除以 100,得到范围在 0~1 之间的值。 2. 计算色相 H 在 RGB 中的值。如果 H 的范围在 0~60 或者 300~360 之间,则 R = V,G = (H/60)×V,B = 0。如果 H 的范围在 60~120 之间,则 R = ((120-H)/60)×V,G = V,B = 0。如果 H 的范围在 120~180 之间,则 R = 0,G = V,B =
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

MATLAB柱状图在数据分析中的作用:从可视化到洞察

![MATLAB柱状图在数据分析中的作用:从可视化到洞察](https://img-blog.csdnimg.cn/img_convert/1a36558cefc0339f7836cca7680c0aef.png) # 1. MATLAB柱状图概述** 柱状图是一种广泛用于数据可视化的图表类型,它使用垂直条形来表示数据中不同类别或组别的值。在MATLAB中,柱状图通过`bar`函数创建,该函数接受数据向量或矩阵作为输入,并生成相应的高度条形。 柱状图的优点在于其简单性和易于理解性。它们可以快速有效地传达数据分布和组别之间的比较。此外,MATLAB提供了广泛的定制选项,允许用户调整条形颜色、
recommend-type

已知自动控制原理中通过更高的频率特征来评估切割频率和库存——相位稳定。确定封闭系统的稳定性。求Wcp 和ψ已知W(p)=30•(0.1p+1)•(12.5p+1)/p•(10p+1)•(0.2p+1)•(p+1)

根据相位稳定的定义,我们需要找到一个频率 Wcp,使得相位满足 -ψ = -180°,即 ψ = 180°。此时系统的相位裕度为 0°,系统处于边缘稳定状态。 首先,我们需要将 W(p) 表示成极点和零点的形式。将分母和分子分别因式分解,得到: W(p) = 30 • (0.1p+1) • (12.5p+1) / [p • (10p+1) • (0.2p+1) • (p+1)] = 375p/(p+1) - 3750/(10p+1) + 750p/(0.2p+1) - 3750p/(10p+1) + 150p/(p+1) + 30 因此,系统的极点为 -1、-0.1、-0.2、
recommend-type

c++校园超市商品信息管理系统课程设计说明书(含源代码) (2).pdf

校园超市商品信息管理系统课程设计旨在帮助学生深入理解程序设计的基础知识,同时锻炼他们的实际操作能力。通过设计和实现一个校园超市商品信息管理系统,学生掌握了如何利用计算机科学与技术知识解决实际问题的能力。在课程设计过程中,学生需要对超市商品和销售员的关系进行有效管理,使系统功能更全面、实用,从而提高用户体验和便利性。 学生在课程设计过程中展现了积极的学习态度和纪律,没有缺勤情况,演示过程流畅且作品具有很强的使用价值。设计报告完整详细,展现了对问题的深入思考和解决能力。在答辩环节中,学生能够自信地回答问题,展示出扎实的专业知识和逻辑思维能力。教师对学生的表现予以肯定,认为学生在课程设计中表现出色,值得称赞。 整个课程设计过程包括平时成绩、报告成绩和演示与答辩成绩三个部分,其中平时表现占比20%,报告成绩占比40%,演示与答辩成绩占比40%。通过这三个部分的综合评定,最终为学生总成绩提供参考。总评分以百分制计算,全面评估学生在课程设计中的各项表现,最终为学生提供综合评价和反馈意见。 通过校园超市商品信息管理系统课程设计,学生不仅提升了对程序设计基础知识的理解与应用能力,同时也增强了团队协作和沟通能力。这一过程旨在培养学生综合运用技术解决问题的能力,为其未来的专业发展打下坚实基础。学生在进行校园超市商品信息管理系统课程设计过程中,不仅获得了理论知识的提升,同时也锻炼了实践能力和创新思维,为其未来的职业发展奠定了坚实基础。 校园超市商品信息管理系统课程设计的目的在于促进学生对程序设计基础知识的深入理解与掌握,同时培养学生解决实际问题的能力。通过对系统功能和用户需求的全面考量,学生设计了一个实用、高效的校园超市商品信息管理系统,为用户提供了更便捷、更高效的管理和使用体验。 综上所述,校园超市商品信息管理系统课程设计是一项旨在提升学生综合能力和实践技能的重要教学活动。通过此次设计,学生不仅深化了对程序设计基础知识的理解,还培养了解决实际问题的能力和团队合作精神。这一过程将为学生未来的专业发展提供坚实基础,使其在实际工作中能够胜任更多挑战。