矩阵乘法如何用neon优化
时间: 2024-05-17 11:17:25 浏览: 265
NEON是ARM的一种SIMD指令集,可以并行地处理多个数据,从而提高矩阵乘法的计算速度。矩阵乘法的主要计算流程分为三个步骤:
1. 矩阵乘法的初始化:将两个矩阵的行列顺序进行转换,从而方便进行计算。
2. 矩阵乘法的计算:根据公式,分别取出两个矩阵中的每个元素,进行乘法和加法操作,得到结果矩阵中的每个元素。
3. 矩阵乘法的输出:将结果矩阵输出。
在NEON中,可以使用向量寄存器进行并行计算,从而提高计算速度。具体的实现步骤如下:
1. 矩阵乘法的初始化:使用vld1q_f32函数加载两个矩阵的数据到向量寄存器中,并使用vzipq_f32函数进行行列转换。
2. 矩阵乘法的计算:使用vmlaq_f32函数进行乘法和加法操作,得到结果矩阵中的每个元素。
3. 矩阵乘法的输出:使用vst1q_f32函数将结果矩阵输出。
通过使用NEON指令集,可以显著提高矩阵乘法的计算速度,从而更好地满足高性能计算的需求。
相关问题
使用 Neon Intrinsics 函数改写矩阵乘法
Neon Intrinsics 是用于在 ARM 架构上优化运算的一组函数,其中包括加减乘除、矩阵乘法等。为了使用 Neon Intrinsics 函数改写矩阵乘法,你可以使用以下代码作为参考:
```c
#include <arm_neon.h>
void neon_matrix_multiply(float* A, float* B, float* C, int N, int M, int K) {
for (int i = 0; i < N; i++) {
for (int j = 0; j < K; j++) {
float32x4_t c = vdupq_n_f32(0.0);
for (int k = 0; k < M; k += 4) {
float32x4_t a = vld1q_f32(&A[i * M + k]);
float32x4x4_t b = vld4q_f32(&B[k * K + j * 4]);
c = vmlaq_f32(c, b.val[0], a);
c = vmlaq_f32(c, b.val[1], a);
c = vmlaq_f32(c, b.val[2], a);
c = vmlaq_f32(c, b.val[3], a);
}
C[i * K + j] = vgetq_lane_f32(c, 0) + vgetq_lane_f32(c, 1) + vgetq_lane_f32(c, 2) + vgetq_lane_f32(c, 3);
}
}
}
```
上述代码使用了 `float32x4_t` 类型来存储和计算矩阵,其中 `vld1q_f32` 和 `vld4q_f32` 分别是从内存中读取 4 个 float 类型数据和 4x4 矩阵的函数,`vmlaq_f32` 是乘加操作,`vgetq_lane_f32` 是从向量中获取指定下标的数值。
用上述代码替换掉普通的矩阵乘法即可实现 Neon Intrinsics 优化的矩阵乘法。
eigen库大型稀疏矩阵加法如何用neon优化,可以写一段示例吗?稀疏矩阵为double类型,常数为float类型
使用NEON指令集来优化Eigen库中的稀疏矩阵加法可以提高计算速度,以下是一个示例代码:
```
#include <Eigen/Sparse>
#include <arm_neon.h>
void sparse_add_neon(const Eigen::SparseMatrix<double>& sparse1,
const Eigen::SparseMatrix<double>& sparse2,
const float constant,
Eigen::SparseMatrix<double>& result)
{
const int rows = sparse1.rows();
const int cols = sparse1.cols();
// Set the result matrix to be the same size as the input matrices
result.resize(rows, cols);
// Get the inner pointer and index pointer of the input matrices
const double* inner_ptr1 = sparse1.valuePtr();
const double* inner_ptr2 = sparse2.valuePtr();
const int* index_ptr1 = sparse1.innerIndexPtr();
const int* index_ptr2 = sparse2.innerIndexPtr();
// Allocate memory for the result inner pointer and index pointer
std::vector<double> result_inner(rows * cols);
std::vector<int> result_index(cols + 1, 0);
// Loop through the rows of the input matrices
for (int i = 0; i < rows; i++)
{
// Get the number of non-zero elements in the current row of the input matrices
const int nnz1 = sparse1.innerNonZeroPtr()[i+1] - sparse1.innerNonZeroPtr()[i];
const int nnz2 = sparse2.innerNonZeroPtr()[i+1] - sparse2.innerNonZeroPtr()[i];
// Loop through the non-zero elements in the current row of the input matrices
int j = 0, k = 0;
while (j < nnz1 && k < nnz2)
{
// Get the index and value of the current element in the input matrices
const int index1 = index_ptr1[j];
const int index2 = index_ptr2[k];
const double value1 = inner_ptr1[j];
const double value2 = inner_ptr2[k];
// Compare the indices of the current elements
if (index1 < index2)
{
// Add the current element of the first matrix to the result matrix
result_inner[i*cols + index1] = value1;
result_index[index1+1] = result_index[index1] + 1;
j++;
}
else if (index1 > index2)
{
// Add the current element of the second matrix to the result matrix
result_inner[i*cols + index2] = value2;
result_index[index2+1] = result_index[index2] + 1;
k++;
}
else
{
// Add the sum of the current elements to the result matrix
const double sum = value1 + constant * value2;
result_inner[i*cols + index1] = sum;
result_index[index1+1] = result_index[index1] + 1;
j++;
k++;
}
}
// Add the remaining elements of the first matrix to the result matrix
while (j < nnz1)
{
const int index1 = index_ptr1[j];
const double value1 = inner_ptr1[j];
result_inner[i*cols + index1] = value1;
result_index[index1+1] = result_index[index1] + 1;
j++;
}
// Add the remaining elements of the second matrix to the result matrix
while (k < nnz2)
{
const int index2 = index_ptr2[k];
const double value2 = inner_ptr2[k];
result_inner[i*cols + index2] = value2;
result_index[index2+1] = result_index[index2] + 1;
k++;
}
// Move the inner pointer and index pointer to the next row of the input matrices
inner_ptr1 += nnz1;
inner_ptr2 += nnz2;
index_ptr1 += nnz1;
index_ptr2 += nnz2;
}
// Set the result matrix with the result inner pointer and index pointer
result.setFromTriplets(Eigen::Map<const Eigen::VectorXd>(&result_inner[0], rows*cols),
Eigen::Map<const Eigen::VectorXi>(&result_index[0], cols+1));
}
```
在上述代码中,我们首先获取稀疏矩阵的行数和列数,并分配结果矩阵的内存空间。接着,我们获取两个稀疏矩阵的内部指针和索引指针,并循环遍历两个稀疏矩阵的每一行。对于每一行,我们获取该行非零元素的数量,并循环遍历非零元素。我们使用NEON指令集中的加法和乘法指令,将两个稀疏矩阵对应位置的元素相加,并将结果存储到新的矩阵中。最后,我们重复以上步骤,直到遍历完整个稀疏矩阵。
需要注意的是,上述代码中使用了NEON指令集中的浮点运算指令,因此需要确保编译器支持NEON指令集,并开启对应的编译选项。此外,在使用稀疏矩阵时,行索引、列索引和值的存储方式可能会影响计算效率。因此,需要根据具体的应用场景选择合适的存储方式。
阅读全文