在jupyter notebook实现马氏距离异常值剔除的代码
时间: 2023-11-08 07:05:07 浏览: 112
代码 基于马氏距离剔除异常样本代码
以下是在 Jupyter Notebook 中实现马氏距离异常值剔除的代码:
```python
import numpy as np
from scipy.stats import chi2
def mahalanobis_distance(x, data):
"""
计算马氏距离
"""
covariance_matrix = np.cov(data.T)
inv_covariance_matrix = np.linalg.inv(covariance_matrix)
mean = np.mean(data, axis=0)
x_diff = (x - mean).reshape(1, -1)
return np.sqrt(np.dot(np.dot(x_diff, inv_covariance_matrix), x_diff.T))
def mahalanobis_outlier_detection(data, significance_level):
"""
马氏距离异常值剔除
"""
distances = []
for i in range(len(data)):
distances.append(mahalanobis_distance(data[i], data))
distances = np.array(distances)
p = 1 - significance_level
threshold = chi2.ppf(p, len(data[0]))
outliers = np.where(distances > np.sqrt(threshold))[0]
return outliers
# 示例
data = np.random.normal(size=(100, 5))
outliers = mahalanobis_outlier_detection(data, 0.95)
print(outliers)
```
阅读全文