gabor3d卷积 pytorch
时间: 2023-10-18 20:07:01 浏览: 106
Gabor卷积是一种常见的在图像处理和计算机视觉中使用的卷积操作,它可以用于提取图像的纹理特征。
在Pytorch中实现Gabor卷积操作,可以使用torch.nn.functional中的函数,具体实现如下:
```python
import torch
import torch.nn.functional as F
def gabor_kernel(size, sigma, theta, lambd, gamma=1.0, psi=0.0):
"""Generate 2D Gabor kernel.
Args:
size (int): Size of the kernel.
sigma (float): Standard deviation of the gaussian envelope.
theta (float): Orientation of the normal to the parallel stripes of a Gabor function.
lambd (float): Wavelength of the sinusoidal factor.
gamma (float, optional): Spatial aspect ratio. Default: 1.0.
psi (float, optional): Phase offset. Default: 0.0.
Returns:
torch.Tensor: 2D Gabor kernel.
"""
sigma_x = sigma
sigma_y = sigma / gamma
# Bounding box
nstds = 3
xmax = max(abs(nstds * sigma_x * torch.cos(theta)), abs(nstds * sigma_y * torch.sin(theta)))
xmax = torch.ceil(torch.max(torch.tensor(1), xmax))
ymax = max(abs(nstds * sigma_x * torch.sin(theta)), abs(nstds * sigma_y * torch.cos(theta)))
ymax = torch.ceil(torch.max(torch.tensor(1), ymax))
xmin = -xmax
ymin = -ymax
(x, y) = torch.meshgrid(torch.arange(xmin, xmax + 1), torch.arange(ymin, ymax + 1))
# Rotation
x_theta = x * torch.cos(theta) + y * torch.sin(theta)
y_theta = -x * torch.sin(theta) + y * torch.cos(theta)
gb = torch.exp(-0.5 * (x_theta ** 2 / sigma_x ** 2 + y_theta ** 2 / sigma_y ** 2)) * \
torch.cos(2 * torch.pi / lambd * x_theta + psi)
return gb
def gabor_convolution(input, kernel):
"""Apply Gabor convolution on input.
Args:
input (torch.Tensor): Input tensor of shape (batch_size, channels, height, width).
kernel (torch.Tensor): Gabor kernel of shape (channels, kernel_size, kernel_size).
Returns:
torch.Tensor: Output tensor of shape (batch_size, channels, height, width).
"""
batch_size, channels, height, width = input.size()
kernel_size = kernel.size(-1)
padding = kernel_size // 2
# Pad input tensor
input = F.pad(input, (padding, padding, padding, padding), mode='reflect')
# Unfold input tensor
input = input.unfold(2, kernel_size, 1).unfold(3, kernel_size, 1)
input = input.permute(0, 2, 3, 1, 4, 5).contiguous()
input = input.view(batch_size, -1, channels * kernel_size ** 2, height, width)
# Flatten kernel tensor
kernel = kernel.view(channels, -1)
# Apply convolution
output = F.conv3d(input, kernel[:, :, None, None, None], padding=(0, padding, padding))
# Reshape output tensor
output = output.view(batch_size, height, width, channels, kernel_size ** 2)
output = output.permute(0, 3, 1, 2, 4).contiguous()
output = output.view(batch_size, channels, height, width, kernel_size ** 2)
output = torch.sum(output, dim=-1)
return output
```
其中,gabor_kernel函数用于生成Gabor卷积核,gabor_convolution函数用于在输入图像上应用Gabor卷积。具体使用方法如下:
```python
# Generate Gabor kernel
size = 11
sigma = 2.0
theta = 0.0
lambd = 5.0
kernel = gabor_kernel(size, sigma, theta, lambd)
# Apply Gabor convolution on input
input = torch.randn(1, 3, 224, 224)
output = gabor_convolution(input, kernel)
```
在上述例子中,使用了一个大小为11x11,标准差为2.0,方向为0度,周期为5.0的Gabor卷积核,并在一个随机生成的3通道图像上应用该卷积核。输出结果为一个3通道的特征图。