def __init__(self, input_dim=(1, 28, 28), conv_param_1 = {'filter_num':16, 'filter_size':3, 'pad':1, 'stride':1}, conv_param_2 = {'filter_num':16, 'filter_size':3, 'pad':1, 'stride':1}, conv_param_3 = {'filter_num':32, 'filter_size':3, 'pad':1, 'stride':1}, conv_param_4 = {'filter_num':32, 'filter_size':3, 'pad':2, 'stride':1}, conv_param_5 = {'filter_num':64, 'filter_size':3, 'pad':1, 'stride':1}, conv_param_6 = {'filter_num':64, 'filter_size':3, 'pad':1, 'stride':1}, hidden_size=50, output_size=2):
时间: 2024-01-13 16:04:40 浏览: 26
conv_encoder.rar_conv_encoder_convolution_encoder
这是一个初始化一个卷积神经网络的函数,它有六个卷积层和一个全连接层。其中,input_dim指定了输入数据的维度;conv_param_*是字典类型的参数,包括卷积核数量,大小,填充和步幅;hidden_size指定了全连接层的隐层神经元数量;output_size指定了输出层的神经元数量,通常用于分类任务中。
阅读全文