基于python opencv检测疲劳驾驶源代码
时间: 2023-05-09 13:02:28 浏览: 447
Python和OpenCV结合使用非常方便,可以轻松处理和分析图像。使用Python和OpenCV检测疲劳驾驶需要两个核心部分:面部检测和眼睛检测。以下是基于Python和OpenCV检测疲劳驾驶的源代码:
```
import cv2
import dlib
from scipy.spatial import distance
def calculate_eye_ratio(eye_points):
A = distance.euclidean(eye_points[1], eye_points[5])
B = distance.euclidean(eye_points[2], eye_points[4])
C = distance.euclidean(eye_points[0], eye_points[3])
eye_ratio = (A + B) / (2.0 * C)
return eye_ratio
cap = cv2.VideoCapture(0)
detector = dlib.get_frontal_face_detector()
predictor = dlib.shape_predictor('shape_predictor_68_face_landmarks.dat')
while True:
ret, frame = cap.read()
gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
faces = detector(gray)
for face in faces:
landmarks = predictor(gray, face)
left_eye_ratio = calculate_eye_ratio([(landmarks.part(36).x, landmarks.part(36).y),
(landmarks.part(37).x, landmarks.part(37).y),
(landmarks.part(38).x, landmarks.part(38).y),
(landmarks.part(39).x, landmarks.part(39).y),
(landmarks.part(40).x, landmarks.part(40).y),
(landmarks.part(41).x, landmarks.part(41).y)])
right_eye_ratio = calculate_eye_ratio([(landmarks.part(42).x, landmarks.part(42).y),
(landmarks.part(43).x, landmarks.part(43).y),
(landmarks.part(44).x, landmarks.part(44).y),
(landmarks.part(45).x, landmarks.part(45).y),
(landmarks.part(46).x, landmarks.part(46).y),
(landmarks.part(47).x, landmarks.part(47).y)])
eye_ratio = (left_eye_ratio + right_eye_ratio) / 2.0
if eye_ratio < 0.3:
cv2.putText(frame, "Sleepy Alert!!!", (10, 80), cv2.FONT_HERSHEY_SIMPLEX, 0.7, (0, 255, 255),2)
cv2.imshow("Driver_Drowsiness_Detection", frame)
if cv2.waitKey(1) & 0xFF == ord('q'):
break
cap.release()
cv2.destroyAllWindows()
```
这个代码片段使用了OpenCV和dlib库,它首先利用dlib库进行面部检测,然后使用预测器从面部形状中获取眼睛位置,最后利用算法计算眼睛的宽高比来判断是否疲劳驾驶。如果宽高比小于指定值,代码就会在视频流上显示 "Sleepy Alert !!!"。您需要将 "shape_predictor_68_face_landmarks.dat" 替换为自己的预测器文件。
阅读全文