self.target_net.load_state_dict((self.eval_net.state_dict()))
时间: 2023-10-30 17:48:13 浏览: 106
你好!这行代码是用来将 `self.eval_net` 的参数复制给 `self.target_net`。`state_dict()` 方法返回了模型的当前参数状态,它是一个字典类型。`load_state_dict()` 方法则是用来加载字典中的参数到模型中,实现参数的复制。通过这样的操作,你可以将一个模型的参数复制到另一个模型中,用于实现一些特定的目标,比如在强化学习中进行目标网络的更新。希望这个解释对你有帮助!如果你还有其他问题,请随时提问。
相关问题
return data, label def __len__(self): return len(self.data)train_dataset = MyDataset(train, y[:split_boundary].values, time_steps, output_steps, target_index)test_ds = MyDataset(test, y[split_boundary:].values, time_steps, output_steps, target_index)class MyLSTMModel(nn.Module): def __init__(self): super(MyLSTMModel, self).__init__() self.rnn = nn.LSTM(input_dim, 16, 1, batch_first=True) self.flatten = nn.Flatten() self.fc1 = nn.Linear(16 * time_steps, 120) self.relu = nn.PReLU() self.fc2 = nn.Linear(120, output_steps) def forward(self, input): out, (h, c) = self.rnn(input) out = self.flatten(out) out = self.fc1(out) out = self.relu(out) out = self.fc2(out) return outepoch_num = 50batch_size = 128learning_rate = 0.001def train(): print('训练开始') model = MyLSTMModel() model.train() opt = optim.Adam(model.parameters(), lr=learning_rate) mse_loss = nn.MSELoss() data_reader = DataLoader(train_dataset, batch_size=batch_size, drop_last=True) history_loss = [] iter_epoch = [] for epoch in range(epoch_num): for data, label in data_reader: # 验证数据和标签的形状是否满足期望,如果不满足,则跳过这个批次 if data.shape[0] != batch_size or label.shape[0] != batch_size: continue train_ds = data.float() train_lb = label.float() out = model(train_ds) avg_loss = mse_loss(out, train_lb) avg_loss.backward() opt.step() opt.zero_grad() print('epoch {}, loss {}'.format(epoch, avg_loss.item())) iter_epoch.append(epoch) history_loss.append(avg_loss.item()) plt.plot(iter_epoch, history_loss, label='loss') plt.legend() plt.xlabel('iters') plt.ylabel('Loss') plt.show() torch.save(model.state_dict(), 'model_1')train()param_dict = torch.load('model_1')model = MyLSTMModel()model.load_state_dict(param_dict)model.eval()data_reader1 = DataLoader(test_ds, batch_size=batch_size, drop_last=True)res = []res1 = []# 在模型预测时,label 的处理for data, label in data_reader1: data = data.float() label = label.float() out = model(data) res.extend(out.detach().numpy().reshape(data.shape[0]).tolist()) res1.extend(label.numpy().tolist()) # 由于预测一步,所以无需 reshape,直接转为 list 即可title = "t321"plt.title(title, fontsize=24)plt.xlabel("time", fontsize=14)plt.ylabel("irr", fontsize=14)plt.plot(res, color='g', label='predict')plt.plot(res1, color='red', label='real')plt.legend()plt.grid()plt.show()的运算过程
这段代码是用 PyTorch 实现的一个 LSTM 模型,用于时间序列预测。首先定义了一个自定义的数据集类 MyDataset,用于加载训练数据和测试数据。然后定义了一个包含 LSTM 层的 MyLSTMModel 模型,并在 train 函数中使用 DataLoader 加载训练数据集,采用 Adam 优化器和 MSE 损失函数进行训练。训练过程中记录了每个 epoch 的损失值,并在训练结束后保存了模型参数。最后,使用加载的模型参数对测试数据进行预测,并将预测结果和真实值可视化展示出来。
LDAM损失函数pytorch代码如下:class LDAMLoss(nn.Module): def init(self, cls_num_list, max_m=0.5, weight=None, s=30): super(LDAMLoss, self).init() m_list = 1.0 / np.sqrt(np.sqrt(cls_num_list)) m_list = m_list * (max_m / np.max(m_list)) m_list = torch.cuda.FloatTensor(m_list) self.m_list = m_list assert s > 0 self.s = s if weight is not None: weight = torch.FloatTensor(weight).cuda() self.weight = weight self.cls_num_list = cls_num_list def forward(self, x, target): index = torch.zeros_like(x, dtype=torch.uint8) index_float = index.type(torch.cuda.FloatTensor) batch_m = torch.matmul(self.m_list[None, :], index_float.transpose(1,0)) # 0,1 batch_m = batch_m.view((16, 1)) # size=(batch_size, 1) (-1,1) x_m = x - batch_m output = torch.where(index, x_m, x) if self.weight is not None: output = output * self.weight[None, :] target = torch.flatten(target) # 将 target 转换成 1D Tensor logit = output * self.s return F.cross_entropy(logit, target, weight=self.weight) 模型部分参数如下:# 设置全局参数 model_lr = 1e-5 BATCH_SIZE = 16 EPOCHS = 50 DEVICE = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu') use_amp = True use_dp = True classes = 7 resume = None CLIP_GRAD = 5.0 Best_ACC = 0 #记录最高得分 use_ema=True model_ema_decay=0.9998 start_epoch=1 seed=1 seed_everything(seed) # 数据增强 mixup mixup_fn = Mixup( mixup_alpha=0.8, cutmix_alpha=1.0, cutmix_minmax=None, prob=0.1, switch_prob=0.5, mode='batch', label_smoothing=0.1, num_classes=classes) 帮我用pytorch实现模型在模型训练中使用LDAM损失函数
好的,以下是使用 LDAM 损失函数训练模型的代码示例:
```python
import torch
import torch.nn as nn
import torch.optim as optim
import torch.nn.functional as F
from torchvision import datasets, transforms
from ldam_loss import LDAMLoss # 假设你已经将 LDAM 损失函数的代码存放在 ldam_loss.py 文件中
# 设置全局参数
model_lr = 1e-5
BATCH_SIZE = 16
EPOCHS = 50
DEVICE = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
use_amp = True
use_dp = True
classes = 7
resume = None
CLIP_GRAD = 5.0
Best_ACC = 0
use_ema = True
model_ema_decay = 0.9998
start_epoch = 1
seed = 1
# 设置随机种子
def seed_everything(seed):
torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
np.random.seed(seed)
random.seed(seed)
seed_everything(seed)
# 数据增强 mixup
mixup_fn = Mixup(
mixup_alpha=0.8,
cutmix_alpha=1.0,
cutmix_minmax=None,
prob=0.1,
switch_prob=0.5,
mode='batch',
label_smoothing=0.1,
num_classes=classes
)
# 加载数据集
train_loader = torch.utils.data.DataLoader(
datasets.CIFAR10('./data', train=True, download=True, transform=transforms.Compose([
transforms.RandomCrop(32, padding=4),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
])),
batch_size=BATCH_SIZE, shuffle=True, num_workers=4, pin_memory=True
)
test_loader = torch.utils.data.DataLoader(
datasets.CIFAR10('./data', train=False, transform=transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
])),
batch_size=BATCH_SIZE, shuffle=False, num_workers=4, pin_memory=True
)
# 定义模型
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
self.conv1 = nn.Conv2d(3, 6, 5)
self.pool = nn.MaxPool2d(2, 2)
self.conv2 = nn.Conv2d(6, 16, 5)
self.fc1 = nn.Linear(16 * 5 * 5, 120)
self.fc2 = nn.Linear(120, 84)
self.fc3 = nn.Linear(84, 10)
def forward(self, x):
x = self.pool(F.relu(self.conv1(x)))
x = self.pool(F.relu(self.conv2(x)))
x = x.view(-1, 16 * 5 * 5)
x = F.relu(self.fc1(x))
x = F.relu(self.fc2(x))
x = self.fc3(x)
return x
# 初始化模型和优化器
model = Net().to(DEVICE)
optimizer = optim.Adam(model.parameters(), lr=model_lr)
# 如果 resume 不为空,则从指定的 checkpoint 恢复模型和优化器
if resume is not None:
checkpoint = torch.load(resume)
model.load_state_dict(checkpoint['model'])
optimizer.load_state_dict(checkpoint['optimizer'])
start_epoch = checkpoint['epoch'] + 1
Best_ACC = checkpoint['Best_ACC']
print(f"Resuming from checkpoint {resume}, epoch {start_epoch}")
# 使用 LDAM 损失函数
cls_num_list = [1000] * classes
criterion = LDAMLoss(cls_num_list, max_m=0.5, s=30).to(DEVICE)
# 训练模型
for epoch in range(start_epoch, EPOCHS + 1):
train_loss = 0
train_acc = 0
model.train()
for batch_idx, (data, target) in enumerate(train_loader):
data, target = data.to(DEVICE), target.to(DEVICE)
data, target_a, target_b, lam = mixup_fn(data, target) # mixup 增强
optimizer.zero_grad()
output = model(data)
loss = lam * criterion(output, target_a) + (1 - lam) * criterion(output, target_b) # 计算 mixup 后的损失函数
loss.backward()
if CLIP_GRAD:
torch.nn.utils.clip_grad_norm_(model.parameters(), CLIP_GRAD) # 梯度裁剪
optimizer.step()
train_loss += loss.item() * data.size(0)
pred = output.argmax(dim=1, keepdim=True)
train_acc += pred.eq(target.view_as(pred)).sum().item()
train_loss /= len(train_loader.dataset)
train_acc /= len(train_loader.dataset)
# 计算测试集上的损失和准确率
test_loss = 0
test_acc = 0
model.eval()
with torch.no_grad():
for data, target in test_loader:
data, target = data.to(DEVICE), target.to(DEVICE)
output = model(data)
test_loss += F.cross_entropy(output, target, reduction='sum').item()
pred = output.argmax(dim=1, keepdim=True)
test_acc += pred.eq(target.view_as(pred)).sum().item()
test_loss /= len(test_loader.dataset)
test_acc /= len(test_loader.dataset)
# 更新 Best_ACC 并保存模型
if test_acc > Best_ACC:
Best_ACC = test_acc
state = {
'model': model.state_dict(),
'optimizer': optimizer.state_dict(),
'epoch': epoch,
'Best_ACC': Best_ACC
}
torch.save(state, f'model_epoch_{epoch}_acc_{Best_ACC:.4f}.pth')
# 打印训练日志
print(f"Epoch {epoch}/{EPOCHS}: train_loss={train_loss:.4f} train_acc={train_acc:.4f} test_loss={test_loss:.4f} test_acc={test_acc:.4f}")
```
这里使用的是 CIFAR-10 数据集和一个简单的卷积神经网络模型,你需要将其替换成你自己的数据集和模型。
阅读全文