图像多类别分割 类别权重调整 代码
时间: 2023-12-06 07:04:54 浏览: 127
以下是一个基于PyTorch框架实现的图像多类别分割的类别权重调整代码示例:
```python
import torch
import torch.nn as nn
import torch.optim as optim
# 定义损失函数
class WeightedCrossEntropyLoss(nn.Module):
def __init__(self, weight=None):
super(WeightedCrossEntropyLoss, self).__init__()
self.weight = weight
def forward(self, input, target):
logp = nn.functional.log_softmax(input, dim=1)
loss = -self.weight[target] * logp.gather(1, target.unsqueeze(1))
return loss.mean()
# 定义模型
class SegmentationModel(nn.Module):
def __init__(self, input_channels, num_classes):
super(SegmentationModel, self).__init__()
self.conv1 = nn.Conv2d(input_channels, 64, kernel_size=3, padding=1)
self.conv2 = nn.Conv2d(64, 64, kernel_size=3, padding=1)
self.conv3 = nn.Conv2d(64, num_classes, kernel_size=1)
def forward(self, x):
x = nn.functional.relu(self.conv1(x))
x = nn.functional.relu(self.conv2(x))
x = self.conv3(x)
return x
# 设置类别权重
weight = torch.tensor([0.1, 0.3, 0.6])
# 创建模型
model = SegmentationModel(input_channels=3, num_classes=3)
# 定义损失函数
criterion = WeightedCrossEntropyLoss(weight=weight)
# 定义优化器
optimizer = optim.Adam(model.parameters(), lr=0.001)
# 训练模型
for epoch in range(num_epochs):
for data, target in dataloader:
optimizer.zero_grad()
output = model(data)
loss = criterion(output, target)
loss.backward()
optimizer.step()
# 在测试集上评估模型
with torch.no_grad():
for data, target in test_dataloader:
output = model(data)
loss = criterion(output, target)
predicted = torch.argmax(output, dim=1)
accuracy = (predicted == target).sum().item() / (data.shape[0] * data.shape[2] * data.shape[3])
print("Test loss: %.4f, accuracy: %.4f" % (loss, accuracy))
```
在上述代码中,我们定义了一个`WeightedCrossEntropyLoss`损失函数,其中`weight`参数用于设置类别权重。在定义模型时,我们使用了一个简单的卷积神经网络,用于实现图像的多类别分割任务。在训练过程中,我们使用了优化器`Adam`和定义的损失函数进行模型优化。最后,在测试集上使用预测结果计算了模型的损失和准确率。
阅读全文