DCA特征融合的pytorch代码实现
时间: 2023-10-18 21:13:18 浏览: 294
以下是一个简单的DCA特征融合的pytorch代码实现:
```python
import torch
import torch.nn as nn
class DCA(nn.Module):
def __init__(self, in_channels):
super(DCA, self).__init__()
self.conv1 = nn.Conv2d(in_channels, in_channels, kernel_size=3, padding=1)
self.bn1 = nn.BatchNorm2d(in_channels)
self.relu1 = nn.ReLU(inplace=True)
self.conv2 = nn.Conv2d(in_channels, in_channels, kernel_size=3, padding=1)
self.bn2 = nn.BatchNorm2d(in_channels)
self.relu2 = nn.ReLU(inplace=True)
self.conv3 = nn.Conv2d(in_channels, in_channels, kernel_size=3, padding=1)
self.bn3 = nn.BatchNorm2d(in_channels)
self.relu3 = nn.ReLU(inplace=True)
def forward(self, x):
identity = x
out = self.conv1(x)
out = self.bn1(out)
out = self.relu1(out)
out = self.conv2(out)
out = self.bn2(out)
out = self.relu2(out)
out = self.conv3(out)
out = self.bn3(out)
out = out + identity
out = self.relu3(out)
return out
class DCA_Fusion(nn.Module):
def __init__(self, in_channels, num_branches):
super(DCA_Fusion, self).__init__()
self.num_branches = num_branches
self.dca_layers = nn.ModuleList()
for i in range(num_branches):
self.dca_layers.append(DCA(in_channels))
def forward(self, x):
out = x[0]
for i in range(1, self.num_branches):
out = out + x[i]
for i in range(self.num_branches):
x[i] = self.dca_layers[i](x[i])
out = out / self.num_branches
out = torch.cat(x, dim=1)
return out
```
在这个实现中,我们首先定义了一个DCA模块,它包含了三个卷积层和BN层,每个卷积层后面都有ReLU激活函数。然后我们定义了一个DCA_Fusion模块,它包含了多个DCA模块,并且实现了特征融合的功能。在forward函数中,我们首先对输入的多个特征图进行求和,然后将每个特征图都输入到对应的DCA模块中进行特征增强,最后将增强后的特征图进行拼接。
阅读全文