用Python写lstm
时间: 2023-11-19 19:43:16 浏览: 108
好的,下面是一个简单的LSTM模型的代码,你可以根据需要进行修改和扩展:
```python
import numpy as np
import tensorflow as tf
# 定义LSTM模型
class LSTM(object):
def __init__(self, input_dim, hidden_dim, output_dim, learning_rate):
self.input_dim = input_dim
self.hidden_dim = hidden_dim
self.output_dim = output_dim
self.learning_rate = learning_rate
# 初始化参数
self.Wf = tf.Variable(tf.random_normal([self.input_dim, self.hidden_dim]), name='Wf')
self.Uf = tf.Variable(tf.random_normal([self.hidden_dim, self.hidden_dim]), name='Uf')
self.bf = tf.Variable(tf.zeros([self.hidden_dim]), name='bf')
self.Wi = tf.Variable(tf.random_normal([self.input_dim, self.hidden_dim]), name='Wi')
self.Ui = tf.Variable(tf.random_normal([self.hidden_dim, self.hidden_dim]), name='Ui')
self.bi = tf.Variable(tf.zeros([self.hidden_dim]), name='bi')
self.Wc = tf.Variable(tf.random_normal([self.input_dim, self.hidden_dim]), name='Wc')
self.Uc = tf.Variable(tf.random_normal([self.hidden_dim, self.hidden_dim]), name='Uc')
self.bc = tf.Variable(tf.zeros([self.hidden_dim]), name='bc')
self.Wo = tf.Variable(tf.random_normal([self.input_dim, self.hidden_dim]), name='Wo')
self.Uo = tf.Variable(tf.random_normal([self.hidden_dim, self.hidden_dim]), name='Uo')
self.bo = tf.Variable(tf.zeros([self.hidden_dim]), name='bo')
self.Wv = tf.Variable(tf.random_normal([self.hidden_dim, self.output_dim]), name='Wv')
self.bv = tf.Variable(tf.zeros([self.output_dim]), name='bv')
# 定义输入和输出
self.x = tf.placeholder(tf.float32, [None, None, self.input_dim])
self.y = tf.placeholder(tf.float32, [None, self.output_dim])
# 定义LSTM计算图
self.states = tf.scan(self.lstm_step, self.x, initializer=self.get_initial_state())
self.prediction = tf.matmul(self.states[-1], self.Wv) + self.bv
# 定义损失函数和优化器
self.loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(labels=self.y, logits=self.prediction))
self.optimizer = tf.train.AdamOptimizer(self.learning_rate).minimize(self.loss)
# 初始化会话
self.sess = tf.Session()
self.sess.run(tf.global_variables_initializer())
# 定义LSTM的计算图
def lstm_step(self, prev_state, x):
h, c = prev_state
f = tf.sigmoid(tf.matmul(x, self.Wf) + tf.matmul(h, self.Uf) + self.bf)
i = tf.sigmoid(tf.matmul(x, self.Wi) + tf.matmul(h, self.Ui) + self.bi)
c_ = tf.tanh(tf.matmul(x, self.Wc) + tf.matmul(h, self.Uc) + self.bc)
c_new = f * c + i * c_
o = tf.sigmoid(tf.matmul(x, self.Wo) + tf.matmul(h, self.Uo) + self.bo)
h_new = o * tf.tanh(c_new)
return h_new, c_new
# 获取LSTM的初始状态
def get_initial_state(self):
h = tf.zeros([tf.shape(self.x)[1], self.hidden_dim])
c = tf.zeros([tf.shape(self.x)[1], self.hidden_dim])
return h, c
# 训练模型
def train(self, x_train, y_train, epoches):
for i in range(epoches):
_, loss = self.sess.run([self.optimizer, self.loss], feed_dict={self.x: x_train, self.y: y_train})
if i % 100 == 0:
print("Epoch:", i, "Loss:", loss)
# 预测结果
def predict(self, x_test):
return self.sess.run(self.prediction, feed_dict={self.x: x_test})
```
这里我们使用TensorFlow框架来实现LSTM模型。在模型中,我们定义了LSTM的输入维度、隐层维度、输出维度和学习率等参数,以及LSTM模型中的各个参数变量。我们使用了TensorFlow的placeholder来定义输入和输出,然后定义了LSTM的计算图,包括LSTM的计算过程和损失函数的计算。最后使用Adam优化算法来调整模型参数,进行训练和预测。
阅读全文