fasterrcnn进行指标评价代码
时间: 2023-07-09 10:35:20 浏览: 127
以下是一个使用Python和PyTorch库进行Faster R-CNN模型评价的示例代码:
```python
import torch
import torchvision
import torchvision.transforms as transforms
from torchvision.models.detection.faster_rcnn import FastRCNNPredictor
from tqdm import tqdm
# 定义设备
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
# 加载数据集
transform = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.5), (0.5))
])
test_set = torchvision.datasets.MNIST(root='./data', train=False, download=True, transform=transform)
test_loader = torch.utils.data.DataLoader(test_set, batch_size=4, shuffle=False, num_workers=0)
# 加载模型
model = torchvision.models.detection.fasterrcnn_resnet50_fpn(pretrained=True)
num_classes = 10
in_features = model.roi_heads.box_predictor.cls_score.in_features
model.roi_heads.box_predictor = FastRCNNPredictor(in_features, num_classes)
model.load_state_dict(torch.load('faster_rcnn_model.pth'))
model.to(device)
model.eval()
# 定义指标
total_loss = 0
total_correct = 0
total_images = 0
# 在测试集上进行评价
with torch.no_grad():
for images, targets in tqdm(test_loader):
images, targets = images.to(device), targets.to(device)
outputs = model(images)
loss = sum(loss for loss in outputs.values())
total_loss += loss.item()
for i in range(len(targets)):
total_images += 1
pred_labels = outputs[i]['labels'].cpu().numpy()
pred_boxes = outputs[i]['boxes'].cpu().numpy()
true_labels = targets[i]['labels'].cpu().numpy()
true_boxes = targets[i]['boxes'].cpu().numpy()
for j in range(len(pred_labels)):
if pred_labels[j] == true_labels[j]:
box_iou = torchvision.ops.box_iou(torch.Tensor([pred_boxes[j]]), torch.Tensor([true_boxes[j]]))
if box_iou > 0.5:
total_correct += 1
# 计算指标
accuracy = total_correct / total_images
average_loss = total_loss / len(test_loader)
# 输出结果
print('Accuracy: {:.2f}%'.format(accuracy*100))
print('Average Loss: {:.2f}'.format(average_loss))
```
以上代码演示了如何使用Faster R-CNN模型对MNIST数据集进行评价,其中包括计算准确率和平均损失两个指标。在实际应用中,可以根据具体的需求选择适当的数据集和评价指标。
阅读全文