在Linux上编写C语言,实现从键盘输入时间片长度、任务个数、每一个任务的到达时间及服务时间; 构造相应的进程并按时间片轮转调度算法对所有进程进行调度,进程运行情况可以输出到终端,从而深入理解时间片轮转调度算法的原理。 编写linux上可运行的程序

时间: 2024-02-09 14:13:16 浏览: 46
好的,下面是一个可以在Linux上运行的C语言程序,实现了时间片轮转调度算法: ``` #include <stdio.h> #include <stdlib.h> #define MAX_PROCESSES 10 struct Process { int id; int arrival_time; int service_time; int remaining_time; }; int main() { struct Process processes[MAX_PROCESSES]; int num_processes, time_slice, current_time = 0, i, j, quantum_count = 0, done_count = 0; float avg_wait_time = 0, avg_turnaround_time = 0; // 输入时间片长度和任务个数 printf("Enter time slice length: "); scanf("%d", &time_slice); printf("Enter number of processes: "); scanf("%d", &num_processes); // 输入每个进程的到达时间和服务时间 for (i = 0; i < num_processes; i++) { printf("Enter arrival time and service time for process %d: ", i+1); scanf("%d %d", &processes[i].arrival_time, &processes[i].service_time); processes[i].id = i+1; processes[i].remaining_time = processes[i].service_time; } // 按照到达时间排序 for (i = 0; i < num_processes; i++) { for (j = i+1; j < num_processes; j++) { if (processes[i].arrival_time > processes[j].arrival_time) { struct Process temp = processes[i]; processes[i] = processes[j]; processes[j] = temp; } } } // 时间片轮转调度 printf("\nProcess execution order:\n\n"); printf("Time\tProcess\n"); while (done_count < num_processes) { for (i = 0; i < num_processes; i++) { if (processes[i].remaining_time > 0 && processes[i].arrival_time <= current_time) { printf("%d\tP%d\n", current_time, processes[i].id); quantum_count++; processes[i].remaining_time--; if (processes[i].remaining_time == 0) { done_count++; avg_wait_time += current_time - processes[i].arrival_time - processes[i].service_time + time_slice*quantum_count; avg_turnaround_time += current_time - processes[i].arrival_time + time_slice*quantum_count; quantum_count = 0; } else if (quantum_count == time_slice) { quantum_count = 0; } } } current_time++; } // 输出平均等待时间和平均周转时间 avg_wait_time /= num_processes; avg_turnaround_time /= num_processes; printf("\nAverage waiting time: %.2f units\n", avg_wait_time); printf("Average turnaround time: %.2f units\n", avg_turnaround_time); return 0; } ``` 你可以将以上代码保存在一个名为 `scheduler.c` 的文件中,并使用以下命令编译并运行该程序: ``` gcc scheduler.c -o scheduler ./scheduler ``` 然后按照程序提示输入时间片长度、任务个数以及每个进程的到达时间和服务时间即可。程序将输出每个进程的执行情况以及平均等待时间和平均周转时间。

相关推荐

最新推荐

recommend-type

基于FPGA的高精度时间数字转换电路的设计与实现

但该法针对具体芯片附加了许多约束条件,延时链中每个非门由片内的一个逻辑宏单元LE实现,由于CPLD容量相对较小,导致芯片资源利用率低,芯片间的移植性差,且由于FPGA与CPLD结构上的差异暂无法在FPGA上实现。...
recommend-type

一个电影院购票平台任务书

总的来说,这个电影院购票平台任务书要求学生具备扎实的理论基础、良好的实践能力和创新能力,通过完整的项目流程,实现一个功能完备、用户体验优秀的购票平台。在这个过程中,学生不仅会深化对软件工程的理解,还能...
recommend-type

FreeRTOS任务切换流程说明

任务控制块:每个任务都有一些属性需要存储,FreeRTOS 把属性集中在一起用一个结构体:tskTCB(老版本)/TCB_t(任务控制块),创建任务时就会自动给每个任务块分配任务控制块。 六. 任务堆栈:任务调度器在进行...
recommend-type

java实现把一个List集合拆分成多个的操作

这里提供了一个通用的`split`方法,它接受一个任意类型泛型的List和一个整数参数,表示每个子集合的长度: ```java public static &lt;T&gt; List&lt;List&lt;T&gt;&gt; split(List&lt;T&gt; resList, int subListLength) { if ...
recommend-type

Pytorch文本分类(imdb数据集),包含DataLoader数据加载,最优模型保存

Pytorch文本分类(imdb数据集),包含DataLoader数据加载,最优模型保存_Pytorch-imdb-classification
recommend-type

C++多态实现机制详解:虚函数与早期绑定

C++多态性实现机制是面向对象编程的重要特性,它允许在运行时根据对象的实际类型动态地调用相应的方法。本文主要关注于虚函数的使用,这是实现多态的关键技术之一。虚函数在基类中声明并被标记为virtual,当派生类重写该函数时,基类的指针或引用可以正确地调用派生类的版本。 在例1-1中,尽管定义了fish类,但基类animal中的breathe()方法并未被声明为虚函数。因此,当我们创建一个fish对象fh,并将其地址赋值给animal类型的指针pAn时,编译器在编译阶段就已经确定了函数的调用地址,这就是早期绑定。这意味着pAn指向的是animal类型的对象,所以调用的是animal类的breathe()函数,而不是fish类的版本,输出结果自然为"animalbreathe"。 要实现多态性,需要在基类中将至少一个成员函数声明为虚函数。这样,即使通过基类指针调用,也能根据实际对象的类型动态调用相应的重载版本。在C++中,使用关键字virtual来声明虚函数,如`virtual void breathe();`。如果在派生类中重写了这个函数,例如在fish类中定义`virtual void breathe() { cout << "fishbubble" << endl; }`,那么即使使用animal类型的指针,也能调用到fish类的breathe()方法。 内存模型的角度来看,当一个派生类对象被赋值给基类指针时,基类指针只存储了派生类对象的基类部分的地址。因此,即使进行类型转换,也只是访问基类的公共成员,而不会访问派生类特有的私有或保护成员。这就解释了为什么即使指针指向的是fish对象,调用的还是animal的breathe()函数。 总结来说,C++多态性是通过虚函数和早期/晚期绑定来实现的。理解这两个概念对于编写可扩展和灵活的代码至关重要。在设计程序时,合理使用多态能够提高代码的复用性和可维护性,使得程序结构更加模块化。通过虚函数,可以在不改变接口的情况下,让基类指针动态调用不同类型的子类对象上的同名方法,从而展现C++强大的继承和封装特性。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

Parallelization Techniques for Matlab Autocorrelation Function: Enhancing Efficiency in Big Data Analysis

# 1. Introduction to Matlab Autocorrelation Function The autocorrelation function is a vital analytical tool in time-domain signal processing, capable of measuring the similarity of a signal with itself at varying time lags. In Matlab, the autocorrelation function can be calculated using the `xcorr
recommend-type

matlab处理nc文件,nc文件是1979-2020年的全球降雨数据,获取一个省份区域内的日降雨量,代码怎么写

在MATLAB中处理`.nc`(NetCDF)文件通常需要使用`netcdf`函数库,它是一个用于读写多种科学数据格式的工具。对于全球降雨数据,你可以按照以下步骤编写代码: 1. 安装必要的库(如果还没有安装): ```matlab % 如果你尚未安装 netcdf 包,可以安装如下: if ~exist('netcdf', 'dir') disp('Installing the NetCDF toolbox...') addpath(genpath(fullfile(matlabroot,'toolbox','nco'))); end ``` 2. 加载nc文件并查看其结
recommend-type

Java多线程与异常处理详解

"Java多线程与进程调度是编程领域中的重要概念,尤其是在Java语言中。多线程允许程序同时执行多个任务,提高系统的效率和响应速度。Java通过Thread类和相关的同步原语支持多线程编程,而进程则是程序的一次执行实例,拥有独立的数据区域。线程作为进程内的执行单元,共享同一地址空间,减少了通信成本。多线程在单CPU系统中通过时间片轮转实现逻辑上的并发执行,而在多CPU系统中则能实现真正的并行。 在Java中,异常处理是保证程序健壮性的重要机制。异常是程序运行时发生的错误,通过捕获和处理异常,可以确保程序在遇到问题时能够优雅地恢复或终止,而不是崩溃。Java的异常处理机制使用try-catch-finally语句块来捕获和处理异常,提供了更高级的异常类型以及finally块确保关键代码的执行。 Jdb是Java的调试工具,特别适合调试多线程程序。它允许开发者设置断点,查看变量状态,单步执行代码,从而帮助定位和解决问题。在多线程环境中,理解线程的生命周期和状态(如新建、运行、阻塞、等待、结束)以及如何控制线程的执行顺序和同步是至关重要的。 Java的多线程支持包括Thread类和Runnable接口。通过继承Thread类或者实现Runnable接口,用户可以创建自己的线程。线程间同步是多线程编程中的一大挑战,Java提供了synchronized关键字、wait()、notify()和notifyAll()等方法来解决这个问题,防止数据竞争和死锁的发生。 在实际应用中,多线程常用于网络编程、数据库访问、GUI应用程序(如Swing或JavaFX)的事件处理、服务器端的并发处理等场景。例如,一个Web服务器可能需要同时处理多个客户端请求,这时使用多线程可以显著提升性能。此外,多线程在动画制作、游戏开发、多媒体应用等领域也发挥着重要作用,因为它允许同时处理渲染、计算和用户交互等多个任务。 Java的多线程与进程调度是构建高效、健壮应用的基础,而异常处理则提升了程序的稳定性。通过深入理解和熟练运用这些概念,开发者可以创建出更加灵活和可靠的软件系统。"