cnn pynq车牌识别具体过程与代码

时间: 2023-08-29 16:06:58 浏览: 170
PYNQ是一款基于Xilinx Zynq系统的开发板,支持使用Python语言进行开发和编程。在PYNQ上进行车牌识别可以使用卷积神经网络(Convolutional Neural Network,CNN)进行实现。 具体过程如下: 1. 数据预处理:将车牌图片转为灰度图像,并进行二值化处理。 2. 特征提取:使用CNN对图像进行卷积、池化等操作,提取图像的特征。 3. 分类识别:将提取的特征输入到全连接层中进行分类识别,得到车牌号码。 4. 结果输出:将识别结果通过显示器或者串口输出。 下面是CNN车牌识别的代码示例: ``` import numpy as np import cv2 import os import tensorflow as tf from tensorflow.keras import layers, models # 载入数据集 def load_dataset(): images = [] labels = [] for root, dirs, files in os.walk('./dataset'): for name in files: filename = os.path.join(root, name) img = cv2.imread(filename, 0) img = cv2.resize(img, (40, 80)) img = img / 255.0 images.append(img) labels.append(int(name[0])) images = np.array(images) labels = np.array(labels) return images, labels # 训练模型 def train_model(): images, labels = load_dataset() model = models.Sequential() model.add(layers.Conv2D(32, (3, 3), activation='relu', input_shape=(80, 40, 1))) model.add(layers.MaxPooling2D((2, 2))) model.add(layers.Conv2D(64, (3, 3), activation='relu')) model.add(layers.MaxPooling2D((2, 2))) model.add(layers.Conv2D(64, (3, 3), activation='relu')) model.add(layers.Flatten()) model.add(layers.Dense(64, activation='relu')) model.add(layers.Dense(10, activation='softmax')) model.compile(optimizer='adam', loss='sparse_categorical_crossentropy', metrics=['accuracy']) model.fit(images, labels, epochs=10, batch_size=32, validation_split=0.2) model.save('cnn_model.h5') # 加载模型并进行识别 def predict_number(image): model = models.load_model('cnn_model.h5') image = cv2.resize(image, (40, 80)) image = image / 255.0 image = np.expand_dims(image, axis=0) image = np.expand_dims(image, axis=3) result = model.predict(image) return np.argmax(result) # 测试模型 def test_model(): test_images, test_labels = load_dataset() model = models.load_model('cnn_model.h5') test_loss, test_acc = model.evaluate(test_images, test_labels) print('Test accuracy:', test_acc) if __name__ == '__main__': train_model() test_model() ``` 在代码中,load_dataset()函数用于载入数据集,train_model()函数用于训练模型并保存模型,predict_number()函数用于对单张图片进行识别,test_model()函数用于测试模型的准确率。在训练模型时,使用了3个卷积层和2个全连接层进行训练,训练集和测试集的比例为8:2。
阅读全文

相关推荐

rar
SupPlate车牌识别系统软件----经得起考验的车牌识别。 带视频跟踪车辆功能,可用于十字路口和路段上卡口违法抓拍. 可检测闯红灯,压实线,压双黄,变道行驶,禁左、直、右转,逆行,违法停车. 有着非常强大的功能。 厦门宸天电子科技有限公司 网站 : http://www.dragonskytech.com 可下载识别演示和sdk开发包。 SupPlate集视频检测卡口,闯红灯电子警察,逆行检测为一体,抓拍率全天候约90%,有效率大于80%。 可很好识别高清照片,对于图像质量差的高清图片,可较好识别。 SupPlate车牌识别是在厦门宸天电子科技有限公司图像处理研发团队经过几年不断精心设计和努力开发的产品。 可识别各种大陆的车牌,包括蓝牌和黑牌,黄牌和白牌,其中黑牌可识别港、澳车牌;黄牌可以识别单排黄色车牌,大型车后车牌和摩托车牌;白牌可以识别包括警车,武警车牌和军车。还可识别香港、澳门地区的车牌,南非和印度尼西亚的车牌识别也有实际应用。 宸天SupPlate车牌识别有以下几大特点: (1):对图像质量要求不敏感:即使图片中车牌处于背光、泛白的情况下(术语对比度低) ,或者车牌字符出现断裂、遮挡、有污渍、模糊、掉漆等等情况,本车牌识别都可较好的识别出来; (2):对图像大小格式要求不严格:可以识别任意大小的图片,在默认参数下车牌字符高度在7~45的范围内,均可识别,对施工要求不是很高; (3): 识别速度快:在P4 2.0 ,512M 机器下768*288图片识别时间不超过50毫秒,如果针对移动实时的可小于30毫秒。 (4):集卡口,闯红灯,逆行,压双黄,移动电子警察等功能为一体,性价比国内最高。 (5):可识别高清晰图片,最大可以获取4个车牌号码。识别500万象素的图像,不超过300毫秒. 特别说明的是:本系统在768*288的图片下识别率极强(对任意质量的图片基本保持在98%以上),识别准确率较高(全天候约90%),其他大小的图片均可较好的识别。 非常优秀的功能:视频检测和车牌识别一体的识别控件(OCX形式),集成1394与DV连接的移动电子警察功能,录像识别功能.还把摄像机的闯红灯电子警察,路段式卡口和逆行检测融合为一体,在抓拍违法车辆和经过车辆后进行车牌识别,并给出车辆图片(2张全景,1张特写),车辆信息(车型,车速,经过时间等),违法信息(正常,闯红灯,逆行,超速等)和车牌信息(车牌号码,车牌颜色,车牌在图像位置信息等)。卡口最多可支持2方向8车道,闯红灯最大可支持4方向,16个车道,替代线圈检测,省去破路面,埋线圈,线圈检测器和系统状态监控器的费用,为用户节约很大一部分的成本。本控件视频检测全天抓拍率大于95%,车牌识别率超过98%,识别准确率约90%,已在国内大量实际应用。 技术服务 QQ :506268930 欢迎加为好友,方便联系. http://www.dragonskytech.com 电话:0592-5622436 5616833

大家在看

recommend-type

MSC.MARC python后处理库py_post(数据提取)

语言:python2; 代码:源码以及讲解以PPT形式上传; 有py_post后处理源代码以及对应详解PPT! PPT中包含几个简单的小例子以及环境配置方法,有需要的小伙伴可以即取即用; 想要进行MSC.MARC后处理学习,PPT中也有介绍相应的方法哦。
recommend-type

WebBrowser脚本错误的完美解决方案

当IE浏览器遇到脚本错误时浏览器,左下角会出现一个黄色图标,点击可以查看脚本错误的详细信息,并不会有弹出的错误信息框。当我们使用WebBrowser控件时有错误信息框弹出,这样程序显的很不友好,而且会让一些自动执行的程序暂停。我看到有人采取的解决方案是做一个窗体杀手程序来关闭弹出的窗体。本文探讨的方法是从控件解决问题。
recommend-type

RealityCapture中文教程

RealityCapture中文教程
recommend-type

二维Hilbert-Huang变换及其在图像增强中的应用 (2009年)

为了更加有效地提取图像细节,在分析希尔伯特――黄变换(Hilbert―Huang Transform, HHT)的基础上给出了二维HHT的实现方法,并应用于图像增强。首先对二维图像信号进行基于Delaunay三角分割的二维经验模式分解,再将分解得到信号的各个内蕴含模式分量分别作总体Hilbert变换。实验结果表明,此方法可细致地描绘出图像的边缘信息,并可在不同程度上体现图像的轮廓信息。该研究在图像压缩和图像分割中有重要的意义。
recommend-type

matlab-基于互相关的亚像素图像配准算法的matlab仿真-源码

matlab_基于互相关的亚像素图像配准算法的matlab仿真_源码

最新推荐

recommend-type

TensorFlow车牌识别完整版代码(含车牌数据集)

在之前的教程中,作者使用MNIST数据集进行车牌识别的初步尝试,但由于MNIST只包含0-9的数字,无法识别车牌上的省份简称和字母,因此在本教程中,作者收集了包含省份简称和26个字母的图片数据集,以实现更完整的车牌...
recommend-type

使用卷积神经网络(CNN)做人脸识别的示例代码

总的来说,使用CNN进行人脸识别是一个涉及图像处理、深度学习模型构建和训练的过程。通过合理的数据预处理、模型选择和训练,我们可以构建一个能够准确识别人脸的系统。在实践中,还需要不断调整和优化模型,以适应...
recommend-type

Python 使用Opencv实现目标检测与识别的示例代码

在计算机视觉领域,目标检测与识别是至关重要的技术,它能帮助系统自动定位并识别图像中的特定对象。本文将深入探讨如何使用Python结合OpenCV库实现这一功能,特别是在实际应用中,例如行人检测。 首先,我们需要...
recommend-type

一种基于LBP和CNN的人脸识别算法

一种基于LBP和CNN的人脸识别算法 本文主要研究一种基于LBP(Local Binary Pattern,局部二值模式)和CNN(Convolutional Neural Network,卷积神经网络)的人脸识别算法,以解决直接将人脸图像作为卷积神经网络的...
recommend-type

基于caffe实现改进的mtcnn完成车牌识别.docx

【基于caffe实现改进的mtcnn完成车牌识别】 在计算机视觉领域,车牌识别是一项重要的技术,广泛应用于交通管理、智能停车系统等。本篇文档主要介绍了一种改进的多任务级联卷积神经网络(MTCNN)在车牌定位中的应用...
recommend-type

RStudio中集成Connections包以优化数据库连接管理

资源摘要信息:"connections:https" ### 标题解释 标题 "connections:https" 直接指向了数据库连接领域中的一个重要概念,即通过HTTP协议(HTTPS为安全版本)来建立与数据库的连接。在IT行业,特别是数据科学与分析、软件开发等领域,建立安全的数据库连接是日常工作的关键环节。此外,标题可能暗示了一个特定的R语言包或软件包,用于通过HTTP/HTTPS协议实现数据库连接。 ### 描述分析 描述中提到的 "connections" 是一个软件包,其主要目标是与R语言的DBI(数据库接口)兼容,并集成到RStudio IDE中。它使得R语言能够连接到数据库,尽管它不直接与RStudio的Connections窗格集成。这表明connections软件包是一个辅助工具,它简化了数据库连接的过程,但并没有改变RStudio的用户界面。 描述还提到connections包能够读取配置,并创建与RStudio的集成。这意味着用户可以在RStudio环境下更加便捷地管理数据库连接。此外,该包提供了将数据库连接和表对象固定为pins的功能,这有助于用户在不同的R会话中持续使用这些资源。 ### 功能介绍 connections包中两个主要的功能是 `connection_open()` 和可能被省略的 `c`。`connection_open()` 函数用于打开数据库连接。它提供了一个替代于 `dbConnect()` 函数的方法,但使用完全相同的参数,增加了自动打开RStudio中的Connections窗格的功能。这样的设计使得用户在使用R语言连接数据库时能有更直观和便捷的操作体验。 ### 安装说明 描述中还提供了安装connections包的命令。用户需要先安装remotes包,然后通过remotes包的`install_github()`函数安装connections包。由于connections包不在CRAN(综合R档案网络)上,所以需要使用GitHub仓库来安装,这也意味着用户将能够访问到该软件包的最新开发版本。 ### 标签解读 标签 "r rstudio pins database-connection connection-pane R" 包含了多个关键词: - "r" 指代R语言,一种广泛用于统计分析和图形表示的编程语言。 - "rstudio" 指代RStudio,一个流行的R语言开发环境。 - "pins" 指代R包pins,它可能与connections包一同使用,用于固定数据库连接和表对象。 - "database-connection" 指代数据库连接,即软件包要解决的核心问题。 - "connection-pane" 指代RStudio IDE中的Connections窗格,connections包旨在与之集成。 - "R" 代表R语言社区或R语言本身。 ### 压缩包文件名称列表分析 文件名称列表 "connections-master" 暗示了一个可能的GitHub仓库名称或文件夹名称。通常 "master" 分支代表了软件包或项目的稳定版或最新版,是大多数用户应该下载和使用的版本。 ### 总结 综上所述,connections包是一个专为R语言和RStudio IDE设计的软件包,旨在简化数据库连接过程并提供与Connections窗格的集成。它允许用户以一种更为方便的方式打开和管理数据库连接,而不直接提供与Connections窗格的集成。connections包通过读取配置文件和固定连接对象,增强了用户体验。安装connections包需通过remotes包从GitHub获取最新开发版本。标签信息显示了connections包与R语言、RStudio、数据库连接以及R社区的紧密联系。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

Keil uVision5全面精通指南

# 摘要 Keil uVision5是一个集成开发环境,广泛应用于嵌入式系统的开发。本文从基础入门开始,详细介绍了Keil uVision5的项目管理、配置、编程实践、高级功能及技巧,并通过项目案例分析,深入阐述了其在实际开发中的应用。本篇论文特别注重于项目创建、目标配置、调试环境搭建、性能优化、脚本编程与自动化、高级调试技术,以及通过嵌入式操作系统集成和驱动开发流程的案例分析,展示了Keil uVision5的实用性和高效性。文章还展望了Keil uVision5的未来发展趋势,并提供了社区资源和学习渠道,为读者提供了一个全面掌握Keil uVision5的平台。 # 关键字 Keil u
recommend-type

flink提交给yarn19个全量同步MYsqlCDC的作业,flink的配置参数怎样设置

在Flink中,如果你需要将19个MySQL CDC(Change Data Capture)的全量同步作业提交到YARN上,你需要确保Flink集群和YARN进行了正确的集成,并配置了适当的参数。以下是可能涉及到的一些关键配置: 1. **并行度(Parallelism)**:每个作业的并行度应该设置得足够高,以便充分利用YARN提供的资源。例如,如果你有19个任务,你可以设置总并行度为19或者是一个更大的数,取决于集群规模。 ```yaml parallelism = 19 或者 根据实际资源调整 ``` 2. **YARN资源配置**:Flink通过`yarn.a
recommend-type

PHP博客旅游的探索之旅

资源摘要信息:"博客旅游" 博客旅游是一个以博客形式分享旅行经验和旅游信息的平台。随着互联网技术的发展和普及,博客作为一种个人在线日志的形式,已经成为人们分享生活点滴、专业知识、旅行体验等的重要途径。博客旅游正是结合了博客的个性化分享特点和旅游的探索性,让旅行爱好者可以记录自己的旅游足迹、分享旅游心得、提供目的地推荐和旅游攻略等。 在博客旅游中,旅行者可以是内容的创造者也可以是内容的消费者。作为创造者,旅行者可以通过博客记录下自己的旅行故事、拍摄的照片和视频、体验和评价各种旅游资源,如酒店、餐馆、景点等,还可以分享旅游小贴士、旅行日程规划等实用信息。作为消费者,其他潜在的旅行者可以通过阅读这些博客内容获得灵感、获取旅行建议,为自己的旅行做准备。 在技术层面,博客平台的构建往往涉及到多种编程语言和技术栈,例如本文件中提到的“PHP”。PHP是一种广泛使用的开源服务器端脚本语言,特别适合于网页开发,并可以嵌入到HTML中使用。使用PHP开发的博客旅游平台可以具有动态内容、用户交互和数据库管理等强大的功能。例如,通过PHP可以实现用户注册登录、博客内容的发布与管理、评论互动、图片和视频上传、博客文章的分类与搜索等功能。 开发一个功能完整的博客旅游平台,可能需要使用到以下几种PHP相关的技术和框架: 1. HTML/CSS/JavaScript:前端页面设计和用户交互的基础技术。 2. 数据库管理:如MySQL,用于存储用户信息、博客文章、评论等数据。 3. MVC框架:如Laravel或CodeIgniter,提供了一种组织代码和应用逻辑的结构化方式。 4. 服务器技术:如Apache或Nginx,作为PHP的运行环境。 5. 安全性考虑:需要实现数据加密、输入验证、防止跨站脚本攻击(XSS)等安全措施。 当创建博客旅游平台时,还需要考虑网站的可扩展性、用户体验、移动端适配、搜索引擎优化(SEO)等多方面因素。一个优质的博客旅游平台,不仅能够提供丰富的内容,还应该注重用户体验,包括页面加载速度、界面设计、内容的易于导航等。 此外,博客旅游平台还可以通过整合社交媒体功能,允许用户通过社交媒体账号登录、分享博客内容到社交网络,从而提升平台的互动性和可见度。 综上所述,博客旅游作为一个结合了旅行分享和在线日志的平台,对于旅行者来说,不仅是一个记录和分享旅行体验的地方,也是一个获取旅行信息、学习旅游知识的重要资源。而对于开发者来说,构建这样一个平台需要运用到多种技术和考虑多个技术细节,确保平台的功能性和用户体验。