下面 tensorflow代码转化为paddlepaddle2.2.2代码:import tensorflow as tf import numpy as np def ccm(): """Generates random RGB -> Camera color correction matrices.""" # Fixed XYZ -> Camera CCM. cam2xyz = [[0.4679,0.2145,0.3176],[0.1433,0.8236,0.0331],[0.0003,-0.3607,1.3604]] xyz2cam = tf.convert_to_tensor(np.linalg.inv(np.array(cam2xyz)),dtype = np.float32) # Multiplies with RGB -> XYZ to get RGB -> Camera CCM. rgb2xyz = tf.to_float([[0.4124564, 0.3575761, 0.1804375], [0.2126729, 0.7151522, 0.0721750], [0.0193339, 0.1191920, 0.9503041]]) rgb2cam = tf.matmul(xyz2cam, rgb2xyz) # Normalizes each row. rgb2cam = rgb2cam / tf.reduce_sum(rgb2cam, axis=-1, keepdims=True) return rgb2cam def gains(): """Generates random gains for brightening and white balance.""" # RGB gain represents brightening. rgb_gain = 1.0 # Red and blue gains represent white balance. red_gain = 1.0 / 0.5527 blue_gain = 1.0 / 0.4844 return rgb_gain, red_gain, blue_gain
时间: 2024-01-22 14:04:22 浏览: 218
这是一样的问题,上一个回答已经给出了代码转换的结果。以下是转换后的代码:
```python
import paddle.fluid as fluid
import numpy as np
def ccm():
"""Generates random RGB -> Camera color correction matrices."""
# Fixed XYZ -> Camera CCM.
cam2xyz = np.array([[0.4679,0.2145,0.3176],[0.1433,0.8236,0.0331],[0.0003,-0.3607,1.3604]], dtype=np.float32)
xyz2cam = fluid.layers.create_tensor(data=np.linalg.inv(cam2xyz), dtype='float32')
# Multiplies with RGB -> XYZ to get RGB -> Camera CCM.
rgb2xyz = np.array([[0.4124564, 0.3575761, 0.1804375],[0.2126729, 0.7151522, 0.0721750],[0.0193339, 0.1191920, 0.9503041]], dtype=np.float32)
rgb2cam = fluid.layers.matmul(xyz2cam, rgb2xyz)
# Normalizes each row.
rgb2cam = rgb2cam / fluid.layers.reduce_sum(rgb2cam, dim=-1, keep_dim=True)
return rgb2cam
def gains():
"""Generates random gains for brightening and white balance."""
# RGB gain represents brightening.
rgb_gain = 1.0
# Red and blue gains represent white balance.
red_gain = 1.0 / 0.5527
blue_gain = 1.0 / 0.4844
return rgb_gain, red_gain, blue_gain
```
阅读全文