详细解释如下matlab中的自定义函数:function net = cnnsetup(net, x, y) assert(~isOctave() || compare_versions(OCTAVE_VERSION, '3.8.0', '>='), ['Octave 3.8.0 or greater is required for CNNs as there is a bug in convolution in previous versions. See http://savannah.gnu.org/bugs/?39314. Your version is ' myOctaveVersion]); inputmaps = 1; mapsize = size(squeeze(x(:, :, 1))); for l = 1 : numel(net.layers) % layer if strcmp(net.layers{l}.type, 's') mapsize = mapsize / net.layers{l}.scale; assert(all(floor(mapsize)==mapsize), ['Layer ' num2str(l) ' size must be integer. Actual: ' num2str(mapsize)]); for j = 1 : inputmaps net.layers{l}.b{j} = 0; end end if strcmp(net.layers{l}.type, 'c') mapsize = mapsize - net.layers{l}.kernelsize + 1; fan_out = net.layers{l}.outputmaps * net.layers{l}.kernelsize ^ 2; for j = 1 : net.layers{l}.outputmaps % output map fan_in = inputmaps * net.layers{l}.kernelsize ^ 2; for i = 1 : inputmaps % input map net.layers{l}.k{i}{j} = (rand(net.layers{l}.kernelsize) - 0.5) * 2 * sqrt(6 / (fan_in + fan_out)); net.layers{l}.dk_old{i}{j} = zeros(size(net.layers{l}.k{i}{j})); net.layers{l}.dk{i}{j} = net.layers{l}.dk_old{i}{j}; end net.layers{l}.b{j} = 0; end inputmaps = net.layers{l}.outputmaps; end end % 'onum' is the number of labels, that's why it is calculated using size(y, 1). If you have 20 labels so the output of the network will be 20 neurons. % 'fvnum' is the number of output neurons at the last layer, the layer just before the output layer. % 'ffb' is the biases of the output neurons. % 'ffW' is the weights between the last layer and the output neurons. Note that the last layer is fully connected to the output layer, that's why the size of the weights is (onum * fvnum) fvnum = prod(mapsize) * inputmaps; onum = size(y, 1); net.ffb = zeros(onum, 1); net.ffW = (rand(onum, fvnum) - 0.5) * 2 * sqrt(6 / (onum + fvnum)); end

时间: 2023-06-26 19:07:42 浏览: 47
这是一个用于设置卷积神经网络的自定义函数,函数名为“cnnsetup”,其输入参数为“net”、“x”和“y”,输出参数为“net”。该函数的目的是初始化神经网络的参数。 首先,在该函数中使用assert函数进行判断,如果运行该函数的Octave版本小于3.8.0,则会抛出异常,并给出一个链接以解决这个问题。 接下来,该函数会计算输入数据的通道数,并确定第一层卷积层的输出尺寸。然后,对于每一层,根据该层的类型和参数对输出尺寸进行更新,并初始化该层的权重和偏置。 对于卷积层,该函数会根据卷积核的大小、输入和输出通道数等参数初始化该层的权重。对于全连接层,该函数会计算全连接层的输入和输出尺寸,并初始化该层的权重和偏置。 最后,该函数返回初始化后的神经网络参数“net”。
相关问题

import pytest class test100: def test1(self): assert 1==1 if __name__=='_main_': pytest.main([__name__])

这段代码中,你定义了一个名为test100的类,并在其中定义了一个名为test1的方法。在test1方法中,你使用了pytest库的assert语句来判断1是否等于1。然后,你使用了一个条件判断语句,检查当前脚本是否作为主程序运行。如果是主程序运行,就调用pytest库的main函数来执行当前模块中的所有测试用例。 需要注意的是,正确的条件判断应该是`if __name__=='__main__':`,而不是`if __name__=='_main_':`。双下划线在两边都要有。此外,你需要将代码放在一个.py文件中才能运行。

def get_k_fold_data(k, i, X, y): assert k > 1 fold_size = X.shape[0] // k X_train, y_train = None, None for j in range(k): idx = slice(j * fold_size, (j + 1) * fold_size) X_part, y_part = X[idx,:], y[idx] if j == i: X_valid, y_valid = X_part, y_part elif X_train is None: X_train, y_train = X_part, y_part else: X_train = nd.concat(X_train, X_part, dim=0) y_train = nd.concat(y_train, y_part, dim=0) return X_train, y_train, X_valid, y_valid 对代码进行注释

# 定义一个函数,用于生成 k 折交叉验证数据集 # k: 折数 # i: 当前为第 i 折作为验证集 # X: 特征数据 # y: 标签数据 def get_k_fold_data(k, i, X, y): # 断言 k 的值必须大于 1 assert k > 1 # 计算每一折数据集的大小 fold_size = X.shape[0] // k # 初始化训练集和验证集的特征数据和标签数据 X_train, y_train = None, None # 遍历每一折数据集 for j in range(k): # 计算当前折数据集的索引范围 idx = slice(j * fold_size, (j + 1) * fold_size) # 划分出当前折的特征数据和标签数据作为验证集 X_part, y_part = X[idx,:], y[idx] if j == i: # 如果当前折是验证集,则将其作为验证集 X_valid, y_valid = X_part, y_part elif X_train is None: # 如果当前训练集为空,则将当前折的特征数据和标签数据作为训练集 X_train, y_train = X_part, y_part else: # 如果当前训练集不为空,则在训练集的特征数据和标签数据后面拼接上当前折的特征数据和标签数据 X_train = nd.concat(X_train, X_part, dim=0) y_train = nd.concat(y_train, y_part, dim=0) # 返回训练集和验证集的特征数据和标签数据 return X_train, y_train, X_valid, y_valid

相关推荐

class UNetEx(nn.Layer): def __init__(self, in_channels, out_channels, kernel_size=3, filters=[16, 32, 64], layers=3, weight_norm=True, batch_norm=True, activation=nn.ReLU, final_activation=None): super().__init__() assert len(filters) > 0 self.final_activation = final_activation self.encoder = create_encoder(in_channels, filters, kernel_size, weight_norm, batch_norm, activation, layers) decoders = [] for i in range(out_channels): decoders.append(create_decoder(1, filters, kernel_size, weight_norm, batch_norm, activation, layers)) self.decoders = nn.Sequential(*decoders) def encode(self, x): tensors = [] indices = [] sizes = [] for encoder in self.encoder: x = encoder(x) sizes.append(x.shape) tensors.append(x) x, ind = F.max_pool2d(x, 2, 2, return_mask=True) indices.append(ind) return x, tensors, indices, sizes def decode(self, _x, _tensors, _indices, _sizes): y = [] for _decoder in self.decoders: x = _x tensors = _tensors[:] indices = _indices[:] sizes = _sizes[:] for decoder in _decoder: tensor = tensors.pop() size = sizes.pop() ind = indices.pop() # 反池化操作,为上采样 x = F.max_unpool2d(x, ind, 2, 2, output_size=size) x = paddle.concat([tensor, x], axis=1) x = decoder(x) y.append(x) return paddle.concat(y, axis=1) def forward(self, x): x, tensors, indices, sizes = self.encode(x) x = self.decode(x, tensors, indices, sizes) if self.final_activation is not None: x = self.final_activation(x) return x 不修改上述神经网络的encoder和decoder的生成方式,用嘴少量的代码实现attention机制,在上述代码里修改。

最新推荐

recommend-type

智慧物流医药物流落地解决方案qytp.pptx

智慧物流医药物流落地解决方案qytp.pptx
recommend-type

JAVA物业管理系统设计与实现.zip

JAVA物业管理系统设计与实现
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

实现实时数据湖架构:Kafka与Hive集成

![实现实时数据湖架构:Kafka与Hive集成](https://img-blog.csdnimg.cn/img_convert/10eb2e6972b3b6086286fc64c0b3ee41.jpeg) # 1. 实时数据湖架构概述** 实时数据湖是一种现代数据管理架构,它允许企业以低延迟的方式收集、存储和处理大量数据。与传统数据仓库不同,实时数据湖不依赖于预先定义的模式,而是采用灵活的架构,可以处理各种数据类型和格式。这种架构为企业提供了以下优势: - **实时洞察:**实时数据湖允许企业访问最新的数据,从而做出更明智的决策。 - **数据民主化:**实时数据湖使各种利益相关者都可
recommend-type

解释minorization-maximization (MM) algorithm,并给出matlab代码编写的例子

Minorization-maximization (MM) algorithm是一种常用的优化算法,用于求解非凸问题或含有约束的优化问题。该算法的基本思想是通过构造一个凸下界函数来逼近原问题,然后通过求解凸下界函数的最优解来逼近原问题的最优解。具体步骤如下: 1. 初始化参数 $\theta_0$,设 $k=0$; 2. 构造一个凸下界函数 $Q(\theta|\theta_k)$,使其满足 $Q(\theta_k|\theta_k)=f(\theta_k)$; 3. 求解 $Q(\theta|\theta_k)$ 的最优值 $\theta_{k+1}=\arg\min_\theta Q(
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

实现实时监控告警系统:Kafka与Grafana整合

![实现实时监控告警系统:Kafka与Grafana整合](https://imgconvert.csdnimg.cn/aHR0cHM6Ly9tbWJpei5xcGljLmNuL21tYml6X2pwZy9BVldpY3ladXVDbEZpY1pLWmw2bUVaWXFUcEdLT1VDdkxRSmQxZXB5R1lxaWNlUjA2c0hFek5Qc3FyRktudFF1VDMxQVl3QTRXV2lhSWFRMEFRc0I1cW1ZOGcvNjQw?x-oss-process=image/format,png) # 1.1 Kafka集群架构 Kafka集群由多个称为代理的服务器组成,这
recommend-type

帮我实现在Androidstudio调用chapgpt并提供源码

首先,你需要运行一个ChitGPT的服务器,然后通过Android应用程序与该服务器进行通信。以下是一个简单的Android应用程序示例,可以与ChitGPT进行通信: 1. 首先,在Android Studio中创建一个新的项目,并添加以下依赖项: ``` implementation 'com.squareup.okhttp3:okhttp:4.9.0' implementation 'com.google.code.gson:gson:2.8.6' ``` 2. 创建一个新的Java类,用于与ChitGPT服务器通信。以下是一个简单的实现: ```java import com.