opencv红外与可见光图像融合

时间: 2023-07-08 21:02:46 浏览: 269
opencv红外与可见光图像融合是通过将红外图像和可见光图像进行融合处理,以提高图像的质量和信息的丰富性。 在opencv中,可以使用多种方法来实现红外与可见光图像融合。其中一种常用的方法是利用图像融合算法,如拉普拉斯金字塔融合算法或是小波变换融合算法。 首先,需要将红外图像和可见光图像进行预处理,包括对图像进行去噪和增强等操作。然后,可以使用拉普拉斯金字塔融合算法,将红外图像和可见光图像分别进行拉普拉斯金字塔分解,得到不同尺度的高频和低频图像。接着,将两个图像的低频部分进行加权平均,得到融合后的低频图像。最后,将高频图像进行相加或是相乘再进行重建,得到融合后的高频图像。将融合后的低频图像和高频图像进行重建,即可得到红外与可见光图像的融合结果。 另一种常用的方法是小波变换融合算法。在这种方法中,首先将红外图像和可见光图像进行小波变换,得到红外和可见光的小波系数。然后,根据一定的权重将两个图像的小波系数进行融合,得到融合后的小波系数。最后,将融合后的小波系数进行反变换,即可得到红外与可见光图像的融合结果。 无论是使用拉普拉斯金字塔融合算法还是小波变换融合算法,都可以实现红外与可见光图像的融合。这种融合方法可以提取红外图像和可见光图像中的有用信息并进行综合,增强图像的质量和信息的丰富性,有助于进一步的图像处理和分析。
相关问题

opencv红外可见光图像融合

OpenCV是一个开源的计算机视觉库,它提了丰富的图像处理和计算机视觉算法。红外可见光图像融合是指将红外图像和可见光图像进行融合,以提取出两种图像的有用信息,从而实现更好的图像分析和理解。 在OpenCV中,可以使用以下步骤进行红外可见光图像融合: 1. 加载红外图像和可见光图像:使用OpenCV的`imread`函数加载红外图像和可见光图像。 2. 图像预处理:对加载的图像进行预处理,例如调整大小、灰度化、直方图均衡化等操作,以便后续处理。 3. 特征提取:使用OpenCV提供的特征提取算法,如SIFT、SURF或ORB等,从红外图像和可见光图像中提取特征点。 4. 特征匹配:将红外图像和可见光图像的特征点进行匹配,找到对应的特征点对。 5. 图像融合:根据特征点对的位置关系,使用一定的融合算法将红外图像和可见光图像进行融合,生成融合后的图像。 6. 后处理:对融合后的图像进行后处理,如增强对比度、去噪等操作,以得到更好的结果。 7. 显示和保存:使用OpenCV的`imshow`函数显示融合后的图像,并使用`imwrite`函数保存图像。

选用MS COCO数据集,使用pytorch训练一个基于多尺度自编码网络的红外与可见光图像融合的模型,以加深对红外与可见光图像融合的理解,掌握图像融合、深度学习、多尺度分析的基本理论方法,实现红外与可见光图像的融合,包括训练、验证、测试等代码

很高兴为您提供帮助!下面是使用PyTorch训练基于多尺度自编码网络的红外与可见光图像融合模型的代码: ## 安装依赖 !pip install numpy !pip install opencv-python !pip install torch !pip install torchvision ## 导入库 import torch import torch.nn as nn import torch.optim as optim import torchvision.transforms as transforms import torchvision.datasets as datasets from torch.autograd import Variable import numpy as np import cv2 ## 定义模型 class FusionNet(nn.Module): def __init__(self): super(FusionNet, self).__init__() # 定义编码器 self.conv1 = nn.Conv2d(3, 64, kernel_size=3, stride=1, padding=1) self.relu1 = nn.ReLU(inplace=True) self.conv2 = nn.Conv2d(64, 128, kernel_size=3, stride=1, padding=1) self.relu2 = nn.ReLU(inplace=True) self.conv3 = nn.Conv2d(128, 256, kernel_size=3, stride=1, padding=1) self.relu3 = nn.ReLU(inplace=True) self.conv4 = nn.Conv2d(256, 512, kernel_size=3, stride=1, padding=1) self.relu4 = nn.ReLU(inplace=True) self.conv5 = nn.Conv2d(512, 1024, kernel_size=3, stride=1, padding=1) self.relu5 = nn.ReLU(inplace=True) # 定义解码器 self.deconv1 = nn.ConvTranspose2d(1024, 512, kernel_size=3, stride=1, padding=1) self.relu6 = nn.ReLU(inplace=True) self.deconv2 = nn.ConvTranspose2d(512, 256, kernel_size=3, stride=1, padding=1) self.relu7 = nn.ReLU(inplace=True) self.deconv3 = nn.ConvTranspose2d(256, 128, kernel_size=3, stride=1, padding=1) self.relu8 = nn.ReLU(inplace=True) self.deconv4 = nn.ConvTranspose2d(128, 64, kernel_size=3, stride=1, padding=1) self.relu9 = nn.ReLU(inplace=True) self.deconv5 = nn.ConvTranspose2d(64, 3, kernel_size=3, stride=1, padding=1) def forward(self, x): # 编码器 out = self.conv1(x) out = self.relu1(out) out = self.conv2(out) out = self.relu2(out) out = self.conv3(out) out = self.relu3(out) out = self.conv4(out) out = self.relu4(out) out = self.conv5(out) out = self.relu5(out) # 解码器 out = self.deconv1(out) out = self.relu6(out) out = self.deconv2(out) out = self.relu7(out) out = self.deconv3(out) out = self.relu8(out) out = self.deconv4(out) out = self.relu9(out) out = self.deconv5(out) return out ## 准备数据集 transform = transforms.Compose([ transforms.ToTensor(), transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)) ]) # 加载COCO数据集 train_set = datasets.CocoDetection(root='./data', annFile='/annotations/instances_train2014.json', transform=transform) # 将可见光图像和红外图像进行融合 def fuse_images(img1, img2): # 调整图像大小 img1 = cv2.resize(img1, (256, 256)) img2 = cv2.resize(img2, (256, 256)) # 将图像转换为灰度图像 img1_gray = cv2.cvtColor(img1, cv2.COLOR_BGR2GRAY) img2_gray = cv2.cvtColor(img2, cv2.COLOR_BGR2GRAY) # 进行SIFT特征提取 sift = cv2.xfeatures2d.SIFT_create() kp1, des1 = sift.detectAndCompute(img1_gray, None) kp2, des2 = sift.detectAndCompute(img2_gray, None) # 进行特征点匹配 bf = cv2.BFMatcher() matches = bf.knnMatch(des1, des2, k=2) good_matches = [] for m, n in matches: if m.distance < 0.5 * n.distance: good_matches.append(m) # 在可见光图像中提取匹配点 img1_pts = np.float32([kp1[m.queryIdx].pt for m in good_matches]).reshape(-1, 1, 2) # 在红外图像中提取匹配点 img2_pts = np.float32([kp2[m.trainIdx].pt for m in good_matches]).reshape(-1, 1, 2) # 进行透视变换 M, mask = cv2.findHomography(img2_pts, img1_pts, cv2.RANSAC, 5.0) result = cv2.warpPerspective(img2, M, (img1.shape[1], img1.shape[0])) # 将可见光图像和红外图像进行融合 alpha = 0.5 beta = (1.0 - alpha) fused_image = cv2.addWeighted(img1, alpha, result, beta, 0.0) return fused_image ## 训练模型 # 定义超参数 num_epochs = 100 batch_size = 32 learning_rate = 0.001 # 创建模型 model = FusionNet() # 定义损失函数和优化器 criterion = nn.MSELoss() optimizer = optim.Adam(model.parameters(), lr=learning_rate) # 将模型移动到GPU上 if torch.cuda.is_available(): model.cuda() # 开始训练 for epoch in range(num_epochs): running_loss = 0.0 # 获取数据集 train_loader = torch.utils.data.DataLoader(train_set, batch_size=batch_size, shuffle=True) for i, (images, _) in enumerate(train_loader): # 将数据移动到GPU上 if torch.cuda.is_available(): images = Variable(images.cuda()) else: images = Variable(images) # 前向传播 outputs = model(images) # 计算损失 loss = criterion(outputs, images) # 反向传播和优化 optimizer.zero_grad() loss.backward() optimizer.step() running_loss += loss.data[0] # 打印损失 print('Epoch [%d/%d], Loss: %.4f' % (epoch+1, num_epochs, running_loss/len(train_loader))) # 保存模型 torch.save(model.state_dict(), 'model.ckpt') ## 测试模型 # 加载模型 model = FusionNet() model.load_state_dict(torch.load('model.ckpt')) # 将模型移动到GPU上 if torch.cuda.is_available(): model.cuda() # 加载测试数据集 test_set = datasets.CocoDetection(root='./data', annFile='/annotations/instances_val2014.json', transform=transform) # 进行测试 for i in range(len(test_set)): # 获取测试数据 image, _ = test_set[i] # 将数据移动到GPU上 if torch.cuda.is_available(): image = Variable(image.unsqueeze(0).cuda()) else: image = Variable(image.unsqueeze(0)) # 前向传播 output = model(image) # 将输出数据转换为图像 output = output.cpu().data.numpy().squeeze() output = np.transpose(output, (1, 2, 0)) output = (output + 1) / 2.0 * 255.0 output = cv2.cvtColor(output, cv2.COLOR_RGB2BGR) # 将可见光图像和红外图像进行融合 visible_image = cv2.imread(test_set.coco.loadImgs(test_set.ids[i])[0]['coco_url']) fused_image = fuse_images(visible_image, output) # 显示结果 cv2.imshow('Visible Image', visible_image) cv2.imshow('Infrared Image', output) cv2.imshow('Fused Image', fused_image) cv2.waitKey(0) cv2.destroyAllWindows() 希望这个代码可以帮助到您!
阅读全文

相关推荐

最新推荐

recommend-type

opencv中图像叠加/图像融合/按位操作的实现

在OpenCV库中,图像处理是一项基础且重要的任务,其中包括图像叠加、图像融合以及按位操作等技术。这些方法在图像合成、图像增强以及视觉效果创造等方面有着广泛的应用。 一、图像叠加 图像叠加,也称为图像相加,...
recommend-type

opencv2实现10张图像上下左右拼接融合

在OpenCV2中,图像拼接融合是一种常见的图像处理任务,尤其在全景图像制作或图像分析中非常有用。本文将详细介绍如何使用OpenCV2库来实现10张图像的上下左右拼接融合。 首先,我们需要了解图像拼接的基本概念。图像...
recommend-type

opencv实现多张图像拼接

OpenCV的`stitching`模块提供了一个更高级的接口,用于自动处理这些复杂情况,包括图像配准、几何变换、曝光校正和图像融合等步骤。 总之,OpenCV为图像拼接提供了直观且功能强大的工具,无论是简单的水平或垂直...
recommend-type

python opencv 图像拼接的实现方法

Python OpenCV 图像拼接是一种将多张图片合并成一张全景图或连续场景的技术,它通过识别和匹配图像之间的相似特征来实现无缝拼接。在本文中,我们将深入探讨如何使用OpenCV库来实现这一过程。 首先,图像拼接分为...
recommend-type

python opencv 实现对图像边缘扩充

Python 的 OpenCV 库提供了丰富的图像处理功能,包括便捷的图像边缘扩充方法。在本文中,我们将详细探讨如何使用 Python 和 OpenCV 来实现这一功能。 首先,OpenCV 提供了一个名为 `copyMakeBorder` 的函数,它可以...
recommend-type

MATLAB新功能:Multi-frame ViewRGB制作彩色图阴影

资源摘要信息:"MULTI_FRAME_VIEWRGB 函数是用于MATLAB开发环境下创建多帧彩色图像阴影的一个实用工具。该函数是MULTI_FRAME_VIEW函数的扩展版本,主要用于处理彩色和灰度图像,并且能够为多种帧创建图形阴影效果。它适用于生成2D图像数据的体视效果,以便于对数据进行更加直观的分析和展示。MULTI_FRAME_VIEWRGB 能够处理的灰度图像会被下采样为8位整数,以确保在处理过程中的高效性。考虑到灰度图像处理的特异性,对于灰度图像建议直接使用MULTI_FRAME_VIEW函数。MULTI_FRAME_VIEWRGB 函数的参数包括文件名、白色边框大小、黑色边框大小以及边框数等,这些参数可以根据用户的需求进行调整,以获得最佳的视觉效果。" 知识点详细说明: 1. MATLAB开发环境:MULTI_FRAME_VIEWRGB 函数是为MATLAB编写的,MATLAB是一种高性能的数值计算环境和第四代编程语言,广泛用于算法开发、数据可视化、数据分析以及数值计算等场合。在进行复杂的图像处理时,MATLAB提供了丰富的库函数和工具箱,能够帮助开发者高效地实现各种图像处理任务。 2. 图形阴影(Shadowing):在图像处理和计算机图形学中,阴影的添加可以使图像或图形更加具有立体感和真实感。特别是在多帧视图中,阴影的使用能够让用户更清晰地区分不同的数据层,帮助理解图像数据中的层次结构。 3. 多帧(Multi-frame):多帧图像处理是指对一系列连续的图像帧进行处理,以实现动态视觉效果或分析图像序列中的动态变化。在诸如视频、连续医学成像或动态模拟等场景中,多帧处理尤为重要。 4. RGB 图像处理:RGB代表红绿蓝三种颜色的光,RGB图像是一种常用的颜色模型,用于显示颜色信息。RGB图像由三个颜色通道组成,每个通道包含不同颜色强度的信息。在MULTI_FRAME_VIEWRGB函数中,可以处理彩色图像,并生成彩色图阴影,增强图像的视觉效果。 5. 参数调整:在MULTI_FRAME_VIEWRGB函数中,用户可以根据需要对参数进行调整,比如白色边框大小(we)、黑色边框大小(be)和边框数(ne)。这些参数影响着生成的图形阴影的外观,允许用户根据具体的应用场景和视觉需求,调整阴影的样式和强度。 6. 下采样(Downsampling):在处理图像时,有时会进行下采样操作,以减少图像的分辨率和数据量。在MULTI_FRAME_VIEWRGB函数中,灰度图像被下采样为8位整数,这主要是为了减少处理的复杂性和加快处理速度,同时保留图像的关键信息。 7. 文件名结构数组:MULTI_FRAME_VIEWRGB 函数使用文件名的结构数组作为输入参数之一。这要求用户提前准备好包含所有图像文件路径的结构数组,以便函数能够逐个处理每个图像文件。 8. MATLAB函数使用:MULTI_FRAME_VIEWRGB函数的使用要求用户具备MATLAB编程基础,能够理解函数的参数和输入输出格式,并能够根据函数提供的用法说明进行实际调用。 9. 压缩包文件名列表:在提供的资源信息中,有两个压缩包文件名称列表,分别是"multi_frame_viewRGB.zip"和"multi_fram_viewRGB.zip"。这里可能存在一个打字错误:"multi_fram_viewRGB.zip" 应该是 "multi_frame_viewRGB.zip"。需要正确提取压缩包中的文件,并且解压缩后正确使用文件名结构数组来调用MULTI_FRAME_VIEWRGB函数。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【实战篇:自定义损失函数】:构建独特损失函数解决特定问题,优化模型性能

![损失函数](https://img-blog.csdnimg.cn/direct/a83762ba6eb248f69091b5154ddf78ca.png) # 1. 损失函数的基本概念与作用 ## 1.1 损失函数定义 损失函数是机器学习中的核心概念,用于衡量模型预测值与实际值之间的差异。它是优化算法调整模型参数以最小化的目标函数。 ```math L(y, f(x)) = \sum_{i=1}^{N} L_i(y_i, f(x_i)) ``` 其中,`L`表示损失函数,`y`为实际值,`f(x)`为模型预测值,`N`为样本数量,`L_i`为第`i`个样本的损失。 ## 1.2 损
recommend-type

在Flow-3D中如何根据水利工程的特定需求设定边界条件和进行网格划分,以便准确模拟水流问题?

要在Flow-3D中设定合适的边界条件和进行精确的网格划分,首先需要深入理解水利工程的具体需求和流体动力学的基本原理。推荐参考《Flow-3D水利教程:边界条件设定与网格划分》,这份资料详细介绍了如何设置工作目录,创建模拟文档,以及进行网格划分和边界条件设定的全过程。 参考资源链接:[Flow-3D水利教程:边界条件设定与网格划分](https://wenku.csdn.net/doc/23xiiycuq6?spm=1055.2569.3001.10343) 在设置边界条件时,需要根据实际的水利工程项目来确定,如在模拟渠道流动时,可能需要设定速度边界条件或水位边界条件。对于复杂的
recommend-type

XKCD Substitutions 3-crx插件:创新的网页文字替换工具

资源摘要信息: "XKCD Substitutions 3-crx插件是一个浏览器扩展程序,它允许用户使用XKCD漫画中的内容替换特定网站上的单词和短语。XKCD是美国漫画家兰德尔·门罗创作的一个网络漫画系列,内容通常涉及幽默、科学、数学、语言和流行文化。XKCD Substitutions 3插件的核心功能是提供一个替换字典,基于XKCD漫画中的特定作品(如漫画1288、1625和1679)来替换文本,使访问网站的体验变得风趣并且具有教育意义。用户可以在插件的选项页面上自定义替换列表,以满足个人的喜好和需求。此外,该插件提供了不同的文本替换样式,包括无提示替换、带下划线的替换以及高亮显示替换,旨在通过不同的视觉效果吸引用户对变更内容的注意。用户还可以将特定网站列入黑名单,防止插件在这些网站上运行,从而避免在不希望干扰的网站上出现替换文本。" 知识点: 1. 浏览器扩展程序简介: 浏览器扩展程序是一种附加软件,可以增强或改变浏览器的功能。用户安装扩展程序后,可以在浏览器中添加新的工具或功能,比如自动填充表单、阻止弹窗广告、管理密码等。XKCD Substitutions 3-crx插件即为一种扩展程序,它专门用于替换网页文本内容。 2. XKCD漫画背景: XKCD是由美国计算机科学家兰德尔·门罗创建的网络漫画系列。门罗以其独特的幽默感著称,漫画内容经常涉及科学、数学、工程学、语言学和流行文化等领域。漫画风格简洁,通常包含幽默和讽刺的元素,吸引了全球大量科技和学术界人士的关注。 3. 插件功能实现: XKCD Substitutions 3-crx插件通过内置的替换规则集来实现文本替换功能。它通过匹配用户访问的网页中的单词和短语,并将其替换为XKCD漫画中的相应条目。例如,如果漫画1288、1625和1679中包含特定的短语或词汇,这些内容就可以被自动替换为插件所识别并替换的文本。 4. 用户自定义替换列表: 插件允许用户访问选项页面来自定义替换列表,这意味着用户可以根据自己的喜好添加、删除或修改替换规则。这种灵活性使得XKCD Substitutions 3成为一个高度个性化的工具,用户可以根据个人兴趣和阅读习惯来调整插件的行为。 5. 替换样式与用户体验: 插件提供了多种文本替换样式,包括无提示替换、带下划线的替换以及高亮显示替换。每种样式都有其特定的用户体验设计。无提示替换适用于不想分散注意力的用户;带下划线的替换和高亮显示替换则更直观地突出显示了被替换的文本,让更改更为明显,适合那些希望追踪替换效果的用户。 6. 黑名单功能: 为了避免在某些网站上无意中干扰网页的原始内容,XKCD Substitutions 3-crx插件提供了黑名单功能。用户可以将特定的域名加入黑名单,防止插件在这些网站上运行替换功能。这样可以保证用户在需要专注阅读的网站上,如工作相关的平台或个人兴趣网站,不会受到插件内容替换的影响。 7. 扩展程序与网络安全: 浏览器扩展程序可能会涉及到用户数据和隐私安全的问题。因此,安装和使用任何第三方扩展程序时,用户都应该确保来源的安全可靠,避免授予不必要的权限。同时,了解扩展程序的权限范围和它如何处理用户数据对于保护个人隐私是至关重要的。 通过这些知识点,可以看出XKCD Substitutions 3-crx插件不仅仅是一个简单的文本替换工具,而是一个结合了个人化定制、交互体验设计以及用户隐私保护的实用型扩展程序。它通过幽默风趣的XKCD漫画内容为用户带来不一样的网络浏览体验。