用C语言写缺陷无损检测系统的代码
时间: 2024-05-07 12:20:43 浏览: 126
机器视觉作业基于OpenCV+Python实现机械零件边缘破损缺陷检测源代码+代码注释.zip
5星 · 资源好评率100%
缺陷无损检测系统是一种复杂的系统,需要使用多种技术和算法,因此代码的编写需要根据具体的应用场景和检测方法进行设计。以下是一个简单的例子,可以用于检测金属材料中的缺陷。
```c
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#define PI 3.14159265358979323846
// 定义复数结构体
typedef struct {
double real;
double imag;
} Complex;
// 计算一维傅里叶变换
void fft(Complex *x, int n) {
int i, j, k;
Complex t, w;
double p;
int l = log(n) / log(2);
for (i = 0; i < n; i++) {
j = 0;
for (k = 0; k < l; k++) {
j <<= 1;
j |= ((i >> k) & 1);
}
if (j < i) {
t = x[i];
x[i] = x[j];
x[j] = t;
}
}
for (i = 0; i < l; i++) {
int m = 1 << i;
int m2 = m << 1;
w.real = 1;
w.imag = 0;
p = PI / m;
Complex wp = { cos(p), -sin(p) };
for (j = 0; j < m; j++) {
for (k = j; k < n; k += m2) {
t.real = w.real * x[k + m].real - w.imag * x[k + m].imag;
t.imag = w.real * x[k + m].imag + w.imag * x[k + m].real;
x[k + m].real = x[k].real - t.real;
x[k + m].imag = x[k].imag - t.imag;
x[k].real += t.real;
x[k].imag += t.imag;
}
w.real = wp.real * w.real - wp.imag * w.imag;
w.imag = wp.real * w.imag + wp.imag * w.real;
}
}
}
// 计算二维傅里叶变换
void fft2d(Complex **x, int nx, int ny) {
int i, j;
Complex *row = (Complex*)malloc(nx * sizeof(Complex));
Complex *col = (Complex*)malloc(ny * sizeof(Complex));
// 对每行进行傅里叶变换
for (i = 0; i < ny; i++) {
for (j = 0; j < nx; j++) {
row[j] = x[j][i];
}
fft(row, nx);
for (j = 0; j < nx; j++) {
x[j][i] = row[j];
}
}
// 对每列进行傅里叶变换
for (i = 0; i < nx; i++) {
for (j = 0; j < ny; j++) {
col[j] = x[i][j];
}
fft(col, ny);
for (j = 0; j < ny; j++) {
x[i][j] = col[j];
}
}
free(row);
free(col);
}
// 检测缺陷
void detect_defect(Complex **x, int nx, int ny, double threshold) {
int i, j;
for (i = 0; i < nx; i++) {
for (j = 0; j < ny; j++) {
double mag = sqrt(x[i][j].real * x[i][j].real + x[i][j].imag * x[i][j].imag);
if (mag > threshold) {
printf("Defect detected at (%d, %d)\n", i, j);
}
}
}
}
int main() {
int nx = 64;
int ny = 64;
double threshold = 1000.0;
Complex **x = (Complex**)malloc(nx * sizeof(Complex*));
int i, j;
for (i = 0; i < nx; i++) {
x[i] = (Complex*)malloc(ny * sizeof(Complex));
for (j = 0; j < ny; j++) {
x[i][j].real = rand() % 256;
x[i][j].imag = 0;
}
}
fft2d(x, nx, ny);
detect_defect(x, nx, ny, threshold);
for (i = 0; i < nx; i++) {
free(x[i]);
}
free(x);
return 0;
}
```
该代码使用了一维和二维傅里叶变换来对输入数据进行频域分析,并在检测到缺陷时输出缺陷的位置坐标。需要注意的是,该代码只是一个简单的例子,实际应用中需要根据具体的需求进行修改和优化。
阅读全文