基于RPCA-OMP算法的图像融合 matlab
时间: 2024-01-28 16:03:55 浏览: 97
matlab-基于小波变换的图像融合算法matlab仿真,带GUI界面,支持灰度图融合和彩色图融合两种模式-源码
RPCA-OMP算法是一种基于稀疏表示的图像融合算法,可以实现高质量的图像融合效果。下面是基于RPCA-OMP算法的图像融合matlab代码示例:
首先,读取需要融合的两幅图像:
```matlab
I1 = imread('image1.jpg');
I2 = imread('image2.jpg');
```
然后,将两幅图像转换为灰度图像:
```matlab
I1_gray = rgb2gray(I1);
I2_gray = rgb2gray(I2);
```
接着,将两幅图像分别进行小波变换:
```matlab
[c1, s1] = wavedec2(I1_gray, 2, 'db4');
[c2, s2] = wavedec2(I2_gray, 2, 'db4');
```
将小波系数矩阵reshape成向量:
```matlab
c1 = c1(:);
c2 = c2(:);
```
接下来,使用RPCA-OMP算法对两幅图像的小波系数进行稀疏表示:
```matlab
lambda = 0.1;
mu = 1e-3;
n1 = size(c1, 1);
n2 = size(c2, 1);
n = n1 + n2;
y = [c1; c2];
D = [eye(n1), zeros(n1, n2); zeros(n2, n1), eye(n2)];
x = RPCA_OMP(y, D, lambda, mu);
```
最后,将稀疏系数矩阵reshape成小波系数矩阵,并进行小波反变换得到融合后的图像:
```matlab
c = reshape(x, [size(I1_gray, 1), size(I1_gray, 2)]);
I_fuse = waverec2(c, s1, 'db4');
```
完整代码如下:
```matlab
I1 = imread('image1.jpg');
I2 = imread('image2.jpg');
I1_gray = rgb2gray(I1);
I2_gray = rgb2gray(I2);
[c1, s1] = wavedec2(I1_gray, 2, 'db4');
[c2, s2] = wavedec2(I2_gray, 2, 'db4');
c1 = c1(:);
c2 = c2(:);
lambda = 0.1;
mu = 1e-3;
n1 = size(c1, 1);
n2 = size(c2, 1);
n = n1 + n2;
y = [c1; c2];
D = [eye(n1), zeros(n1, n2); zeros(n2, n1), eye(n2)];
x = RPCA_OMP(y, D, lambda, mu);
c = reshape(x, [size(I1_gray, 1), size(I1_gray, 2)]);
I_fuse = waverec2(c, s1, 'db4');
imshow(I_fuse);
```
其中,RPCA_OMP函数是RPCA-OMP算法的实现函数,需要自己编写。
阅读全文