% 定义4个隐含层 W1 = rand(size(Ttrain2)); BI1 = rand(size(Ttrain2)); W2 = rand(size(Ttrain2)); BI2 = rand(size(Ttrain2)); W3 = rand(size(Ttrain2)); BI3 = rand(size(Ttrain2)); W4 = rand(size(Ttrain2)); BI4 = rand(size(Ttrain2)); % 输出层 WO = rand(size(Ttrain2)); BO = rand(size(Ttrain2)); % 学习率 Lr = 0.005; % 迭代次数 Iter = 2000; for it = 1:Iter it; % 训练 tmps1 = relu(Ptrain2.*WI + BI); residual1 = Ttrain2 - tmps1; % 第一层残差 tmps2 = relu(tmps1.*W1 + BI1); residual2 = Ttrain2 - tmps2; % 第二层残差 tmps3 = relu(tmps2.*W2 + BI2); residual3 = Ttrain2 - tmps3; % 第三层残差 tmps4 = relu(tmps3.*W3 + BI3); residual4 = Ttrain2 - tmps4; % 第四层残差 tmps5 = relu(tmps4.*W4 + BI4); residual5 = Ttrain2 - tmps5; % 第五层残差 tmps6 = relu(tmps5.*WO+BO); residual6 = Ttrain2 - tmps6; % 输出层残差 % 更新网络参数 W1 = W1 + Lr * relu_derivative(residual2) .* tmps1 + Lr * relu_derivative(residual1) .* tmps1; BI1 = BI1 + Lr * relu_derivative(residual2) + Lr * relu_derivative(residual1); W2 = W2 + Lr * relu_derivative(residual3) .* tmps2 + Lr * relu_derivative(residual2) .* tmps2; BI2 = BI2 + Lr * relu_derivative(residual3) + Lr * relu_derivative(residual2); W3 = W3 + Lr * relu_derivative(residual4) .* tmps3 + Lr * relu_derivative(residual3) .* tmps3; BI3 = BI3 + Lr * relu_derivative(residual4) + Lr * relu_derivative(residual3); W4 = W4 + Lr * relu_derivative(residual5) .* tmps4 + Lr * relu_derivative(residual4) .* tmps4; BI4 = BI4 + Lr * relu_derivative(residual5) + Lr * relu_derivative(residual4); % 输出层 WO = WO + Lr * residual6 .* tmps5; BO = BO + Lr * residual6; errors(it) = mean2(abs(residual6)); end

时间: 2024-04-11 19:33:07 浏览: 9
这段代码是一个基于反向传播算法的神经网络训练代码,用于训练一个具有4个隐含层和一个输出层的神经网络模型。以下是代码的解释: - 首先,定义了4个隐含层的权重矩阵 W1、W2、W3 和 W4,以及对应的偏置矩阵 BI1、BI2、BI3 和 BI4。 - 接着,定义了输出层的权重矩阵 WO 和偏置矩阵 BO。 - 学习率 Lr 和迭代次数 Iter 也被定义。 - 在每次迭代开始时,首先计算每一层的输出 tmps1、tmps2、tmps3、tmps4 和 tmps5,以及输出层的输出 tmps6。 - 然后,计算每一层的残差 residual1、residual2、residual3、residual4 和 residual5,以及输出层的残差 residual6。 - 最后,根据反向传播算法,更新每一层的权重矩阵和偏置矩阵。 - 在每次迭代结束时,记录当前迭代的误差值,并保存在 errors 数组中。 这段代码的目的是训练神经网络模型,使其能够通过输入 Ptrain2 来预测目标值 Ttrain2。训练过程通过不断调整权重和偏置来减小预测值与目标值之间的误差。
相关问题

神经网络隐含层节点数2n-1

神经网络的隐含层节点数通常是根据经验公式2n-1来确定,其中n代表输入层的节点数。这个公式的提出是为了在实际应用中找到一个合适的隐含层节点数,以便实现神经网络的高效运行和良好的性能。 隐含层节点数2n-1的选择是基于经验和实践总结出来的。在实际操作中,这样的节点数通常能够满足大多数情况下的需求,能够在保证网络有效性的基础上尽可能地减少计算复杂度和提高计算效率。 通过2n-1的公式,我们能够很方便地根据输入层节点数来确定隐含层节点数,从而避免了随意选择节点数所导致的网络性能不佳的问题。当然,在实际应用中,为了更好地满足具体问题的需求,节点数的选择还需要结合实际情况进行综合考虑和调整。 总的来说,神经网络的隐含层节点数2n-1这个经验公式是为了帮助我们更好地构建和设计网络结构,以实现网络的高效运行和良好的性能。在具体应用中,我们可以根据问题的特点和需求对节点数进行适当调整,以便更好地解决实际问题。

解释下这段代码E=zeros(1,loopNumber); for ii=1:loopNumber E(ii)=0; for i=1:1:1500 %% 网络预测输出 x=inputn(:,i); % 隐含层输出 for j=1:1:midnum I(j)=inputn(:,i)'*w1(j,:)'+b1(j); Iout(j)=1/(1+exp(-I(j))); end % 输出层输出 yn=w2'*Iout'+b2; %% 权值阀值修正 %计算误差 e=output_train(:,i)-yn; E(ii)=E(ii)+sum(abs(e)); %计算权值变化率 dw2=e*Iout; db2=e'; for j=1:1:midnum S=1/(1+exp(-I(j))); FI(j)=S*(1-S); end for k=1:1:innum for j=1:1:midnum dw1(k,j)=FI(j)*x(k)*(e(1)*w2(j,1)+e(2)*w2(j,2)+e(3)*w2(j,3)+e(4)*w2(j,4)); db1(j)=FI(j)*(e(1)*w2(j,1)+e(2)*w2(j,2)+e(3)*w2(j,3)+e(4)*w2(j,4)); end end w1=w1_1+xite*dw1'; b1=b1_1+xite*db1'; w2=w2_1+xite*dw2'; b2=b2_1+xite*db2'; w1_2=w1_1;w1_1=w1; w2_2=w2_1;w2_1=w2; b1_2=b1_1;b1_1=b1; b2_2=b2_1;b2_1=b2; end end

这段代码是一个简单的神经网络的训练过程。首先,代码初始化了一个名为E的一维数组,长度为loopNumber。然后进行了loopNumber次循环。 在每次循环中,代码对1500个输入样本进行处理。首先,从输入样本中获取一个输入向量x。然后,通过输入向量和权重矩阵w1以及偏置向量b1计算隐藏层的输出Iout。接下来,通过权重矩阵w2和偏置向量b2计算网络的预测输出yn。 然后,代码计算了误差e,即训练样本的期望输出与网络预测输出的差值,并将其累加到E(ii)中。 接下来,代码根据误差和隐藏层的输出计算了权值变化率dw2和db2,并计算了隐藏层神经元的激活函数的导数FI。 接着,代码根据FI、输入向量x、误差e和权重矩阵w2计算了权值变化率dw1和db1。 最后,代码根据学习率xite和权值变化率更新了权重矩阵w1和w2以及偏置向量b1和b2,并将更新后的权重矩阵和偏置向量保存在w1_1、w2_1、b1_1和b2_1中。 整个过程重复loopNumber次,最终得到了E数组,其中存储了每次循环的总误差。

相关推荐

###function approximation f(x)=sin(x) ###2018.08.14 ###激活函数用的是sigmoid import numpy as np import math import matplotlib.pyplot as plt x = np.linspace(-3, 3, 600) # print(x) # print(x[1]) x_size = x.size y = np.zeros((x_size, 1)) # print(y.size) for i in range(x_size): y[i] = math.sin(2*math.pi*0.4*x[i])+ math.sin(2*math.pi*0.1*x[i]) + math.sin(2*math.pi*0.9*x[i]) # print(y) hidesize = 10 W1 = np.random.random((hidesize, 1)) # 输入层与隐层之间的权重 B1 = np.random.random((hidesize, 1)) # 隐含层神经元的阈值 W2 = np.random.random((1, hidesize)) # 隐含层与输出层之间的权重 B2 = np.random.random((1, 1)) # 输出层神经元的阈值 threshold = 0.005 max_steps = 1001 def sigmoid(x_): y_ = 1 / (1 + math.exp(-x_)) return y_ E = np.zeros((max_steps, 1)) # 误差随迭代次数的变化 Y = np.zeros((x_size, 1)) # 模型的输出结果 for k in range(max_steps): temp = 0 for i in range(x_size): hide_in = np.dot(x[i], W1) - B1 # 隐含层输入数据 # print(x[i]) hide_out = np.zeros((hidesize, 1)) # 隐含层的输出数据 for j in range(hidesize): # print("第{}个的值是{}".format(j,hide_in[j])) # print(j,sigmoid(j)) hide_out[j] = sigmoid(hide_in[j]) # print("第{}个的值是{}".format(j, hide_out[j])) # print(hide_out[3]) y_out = np.dot(W2, hide_out) - B2 # 模型输出 # print(y_out) Y[i] = y_out # print(i,Y[i]) e = y_out - y[i] # 模型输出减去实际结果。得出误差 ##反馈,修改参数 dB2 = -1 * threshold * e dW2 = e * threshold * np.transpose(hide_out) dB1 = np.zeros((hidesize, 1)) for j in range(hidesize): dB1[j] = np.dot(np.dot(W2[0][j], sigmoid(hide_in[j])), (1 - sigmoid(hide_in[j])) * (-1) * e * threshold) dW1 = np.zeros((hidesize, 1)) for j in range(hidesize): dW1[j] = np.dot(np.dot(W2[0][j], sigmoid(hide_in[j])), (1 - sigmoid(hide_in[j])) * x[i] * e * threshold) W1 = W1 - dW1 B1 = B1 - dB1 W2 = W2 - dW2 B2 = B2 - dB2 temp = temp + abs(e) E[k] = temp if k % 100 == 0: print(k) plt.figure() plt.plot(x, Y) plt.plot(x, Y, color='red', linestyle='--') plt.show()这个程序如何每迭代100次就输出一次图片

% 载入数据 res = xlsread('Copy_of_数据集.xlsx'); input = res((1:120), 2:6)'; % 载入输入数据 output = res((1:120), 7:9)'; % 载入输出数据 % 划分训练集和测试集 input_train = input(:, 1:80); output_train = output(:, 1:80); input_test = input(:, 81:100); output_test = output(:, 81:100); % 归一化 [input_train_n, input_ps] = mapminmax(input_train, -1, 1); [output_train_n, output_ps] = mapminmax(output_train, -1, 1); % 建立模型 input_num = size(input_train_n, 1); % 输入层节点数量 hidden_num = 10; % 隐含层节点数量 output_num = size(output_train_n, 1); % 输出层节点数量 net = newff(input_train_n, output_train_n, hidden_num, {'tansig','purelin'}, 'trainlm'); net.trainParam.epochs = 15000; net.trainParam.lr = 0.01; net.trainParam.goal = 0.0001; % 训练模型 [net, tr] = train(net, input_train_n, output_train_n); % 测试模型 input_test_n = mapminmax('apply', input_test, input_ps); output_test_n = mapminmax('apply', output_test, output_ps); output_pred_n = sim(net, input_test_n); %%反归一化 output_test_pred = mapminmax('reverse', output_pred_n, output_ps); output_test_pred = round(output_test_pred); % 四舍五入取整 % 使用测试集评估网络性能 pos_pred = net_pos(test_set(:, 1:input_size)'); % 预测位置 ori_pred = net_ori(test_set(:, 1:input_size)'); % 预测姿态 pos_error = pos_pred - test_set(:, input_size+1:input_size+output_size); % 位置误差 ori_error = ori_pred - test_set(:, input_size+output_size+1:end); % 姿态误差 mse_pos = mean(pos_error.^2); % 位置均方误差 mse_ori = mean(ori_error.^2); % 姿态均方误差 % 使用附加测试集评估网络性能 additional_test_data = [theta([6, 12, 18], :), actual_poses([6, 12, 18], :)]; pos_pred = net_pos(additional_test_data(:, 1:input_size)'); % 预测位置 ori_pred = net_ori(additional_test_data(:, 1:input_size)'); % 预测姿态 pos_error = pos_pred - additional_test_data(:, input_size+1:input_size+output_size); % 位置误差 ori_error = ori_pred - additional_test_data(:, input_size+output_size+1:end); % 姿态误差 mse_pos_additional = mean(pos_error.^2); % 位置均方误差 mse_ori_additional = mean(ori_error.^2); % 姿态均方误差 %%绘制预测结果和真实结果的对比图 figure; plot(output_test(1,:), 'bo-'); hold on; plot(output_test_pred(1,:), 'r*-'); legend('真实结果', '预测结果'); xlabel('样本编号'); ylabel('输出值'); title('预测结果和真实结果'); 帮我修改一下这段代码

最新推荐

recommend-type

高校学生选课系统项目源码资源

项目名称: 高校学生选课系统 内容概要: 高校学生选课系统是为了方便高校学生进行选课管理而设计的系统。该系统提供了学生选课、查看课程信息、管理个人课程表等功能,同时也为教师提供了课程发布和管理功能,以及管理员对整个选课系统的管理功能。 适用人群: 学生: 高校本科生和研究生,用于选课、查看课程信息、管理个人课程表等。 教师: 高校教师,用于发布课程、管理课程信息和学生选课情况等。 管理员: 系统管理员,用于管理整个选课系统,包括用户管理、课程管理、权限管理等。 使用场景及目标: 学生选课场景: 学生登录系统后可以浏览课程列表,根据自己的专业和兴趣选择适合自己的课程,并进行选课操作。系统会实时更新学生的选课信息,并生成个人课程表。 教师发布课程场景: 教师登录系统后可以发布新的课程信息,包括课程名称、课程描述、上课时间、上课地点等。发布后的课程将出现在课程列表中供学生选择。 管理员管理场景: 管理员可以管理系统的用户信息,包括学生、教师和管理员账号的添加、删除和修改;管理课程信息,包括课程的添加、删除和修改;管理系统的权限控制,包括用户权限的分配和管理。 目标: 为高校学生提
recommend-type

TC-125 230V 50HZ 圆锯

TC-125 230V 50HZ 圆锯
recommend-type

RTL8188FU-Linux-v5.7.4.2-36687.20200602.tar(20765).gz

REALTEK 8188FTV 8188eus 8188etv linux驱动程序稳定版本, 支持AP,STA 以及AP+STA 共存模式。 稳定支持linux4.0以上内核。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

:YOLOv1目标检测算法:实时目标检测的先驱,开启计算机视觉新篇章

![:YOLOv1目标检测算法:实时目标检测的先驱,开启计算机视觉新篇章](https://img-blog.csdnimg.cn/img_convert/69b98e1a619b1bb3c59cf98f4e397cd2.png) # 1. 目标检测算法概述 目标检测算法是一种计算机视觉技术,用于识别和定位图像或视频中的对象。它在各种应用中至关重要,例如自动驾驶、视频监控和医疗诊断。 目标检测算法通常分为两类:两阶段算法和单阶段算法。两阶段算法,如 R-CNN 和 Fast R-CNN,首先生成候选区域,然后对每个区域进行分类和边界框回归。单阶段算法,如 YOLO 和 SSD,一次性执行检
recommend-type

info-center source defatult

这是一个 Cisco IOS 命令,用于配置 Info Center 默认源。Info Center 是 Cisco 设备的日志记录和报告工具,可以用于收集和查看设备的事件、警报和错误信息。该命令用于配置 Info Center 默认源,即设备的默认日志记录和报告服务器。在命令行界面中输入该命令后,可以使用其他命令来配置默认源的 IP 地址、端口号和协议等参数。
recommend-type

c++校园超市商品信息管理系统课程设计说明书(含源代码) (2).pdf

校园超市商品信息管理系统课程设计旨在帮助学生深入理解程序设计的基础知识,同时锻炼他们的实际操作能力。通过设计和实现一个校园超市商品信息管理系统,学生掌握了如何利用计算机科学与技术知识解决实际问题的能力。在课程设计过程中,学生需要对超市商品和销售员的关系进行有效管理,使系统功能更全面、实用,从而提高用户体验和便利性。 学生在课程设计过程中展现了积极的学习态度和纪律,没有缺勤情况,演示过程流畅且作品具有很强的使用价值。设计报告完整详细,展现了对问题的深入思考和解决能力。在答辩环节中,学生能够自信地回答问题,展示出扎实的专业知识和逻辑思维能力。教师对学生的表现予以肯定,认为学生在课程设计中表现出色,值得称赞。 整个课程设计过程包括平时成绩、报告成绩和演示与答辩成绩三个部分,其中平时表现占比20%,报告成绩占比40%,演示与答辩成绩占比40%。通过这三个部分的综合评定,最终为学生总成绩提供参考。总评分以百分制计算,全面评估学生在课程设计中的各项表现,最终为学生提供综合评价和反馈意见。 通过校园超市商品信息管理系统课程设计,学生不仅提升了对程序设计基础知识的理解与应用能力,同时也增强了团队协作和沟通能力。这一过程旨在培养学生综合运用技术解决问题的能力,为其未来的专业发展打下坚实基础。学生在进行校园超市商品信息管理系统课程设计过程中,不仅获得了理论知识的提升,同时也锻炼了实践能力和创新思维,为其未来的职业发展奠定了坚实基础。 校园超市商品信息管理系统课程设计的目的在于促进学生对程序设计基础知识的深入理解与掌握,同时培养学生解决实际问题的能力。通过对系统功能和用户需求的全面考量,学生设计了一个实用、高效的校园超市商品信息管理系统,为用户提供了更便捷、更高效的管理和使用体验。 综上所述,校园超市商品信息管理系统课程设计是一项旨在提升学生综合能力和实践技能的重要教学活动。通过此次设计,学生不仅深化了对程序设计基础知识的理解,还培养了解决实际问题的能力和团队合作精神。这一过程将为学生未来的专业发展提供坚实基础,使其在实际工作中能够胜任更多挑战。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

:YOLO目标检测算法的挑战与机遇:数据质量、计算资源与算法优化,探索未来发展方向

![:YOLO目标检测算法的挑战与机遇:数据质量、计算资源与算法优化,探索未来发展方向](https://img-blog.csdnimg.cn/7e3d12895feb4651b9748135c91e0f1a.png?x-oss-process=image/watermark,type_ZHJvaWRzYW5zZmFsbGJhY2s,shadow_50,text_Q1NETiBA5rKJ6YaJ77yM5LqO6aOO5Lit,size_20,color_FFFFFF,t_70,g_se,x_16) # 1. YOLO目标检测算法简介 YOLO(You Only Look Once)是一种
recommend-type

tinyplay /storage/BFEF-19EE/wav.wav -D 0 cannot open device 0 for card 0 Unable to open PCM device 0.

这个错误信息可能是由于无法打开PCM设备0导致的。请检查以下几个方面,以便解决这个问题: 1. 你是否有足够的权限来访问该设备? 2. 检查一下PCM设备0是否已经被其他程序占用了。 3. 确认一下你的PCM设备是否已经被正确地配置和设置。 4. 检查一下你的系统是否有足够的内存和资源来支持你的PCM设备。 如果以上几个方面都检查过了,仍然无法解决问题,你可以尝试使用其他的设备号或者采用其他的操作系统来测试这个问题。