写一个用pycharm实现PSNR算法来评估图像质量
时间: 2023-12-30 19:02:58 浏览: 104
好的,以下是一个使用PyCharm实现PSNR算法来评估图像质量的例子:
```python
import cv2
import math
def PSNR(original, compressed):
mse = np.mean((original - compressed) ** 2)
if mse == 0:
return 100
PIXEL_MAX = 255.0
psnr = 20 * math.log10(PIXEL_MAX / math.sqrt(mse))
return psnr
# 读取图像
img1 = cv2.imread('original.png')
img2 = cv2.imread('compressed.png')
# 转换为灰度图像
gray1 = cv2.cvtColor(img1, cv2.COLOR_BGR2GRAY)
gray2 = cv2.cvtColor(img2, cv2.COLOR_BGR2GRAY)
# 计算PSNR
psnr = PSNR(gray1, gray2)
print("PSNR:", psnr)
```
在这个例子中,我们首先定义了一个函数PSNR来计算PSNR值。然后,我们使用cv2.imread()函数来读取原始图像和压缩后的图像,并使用cv2.cvtColor()函数将它们转换为灰度图像。最后,我们调用PSNR函数来计算PSNR值,并将结果打印出来。请注意,您需要确保在运行代码之前将原始图像和压缩后的图像放在正确的文件路径下。
相关问题
pycharm将import scipy.fftpack as fp from skimage.io import imread from skimage.color import rgb2gray, gray2rgb import matplotlib.pyplot as plt from skimage.draw import rectangle_perimeter import numpy as np import cv2 import numpy as np import matplotlib.pylab as plt from mpl_toolkits.mplot3d import Axes3D # noqa: F401 unused import from mpl_toolkits.axes_grid1 import make_axes_locatable from skimage.metrics import peak_signal_noise_ratio, structural_similarity from sklearn.metrics import mean_squared_error, mean_absolute_error from matplotlib.ticker import LinearLocator, FormatStrFormatter from scipy.fftpack import dct, idct import cv2 as cv def dct2(a): return dct(dct(a, axis=0, norm='ortho'), axis=1, norm='ortho') def idct2(a): return idct(idct(a, axis=0, norm='ortho'), axis=1, norm='ortho') im = rgb2gray(imread('2.jpg')) imF = dct2(im) im1 = idct2(imF) print(np.allclose(im, im1))优化一下,能控制压缩率
好的,你可以考虑使用基于DCT的图像压缩算法,通过调整量化表来控制压缩比率和图像质量之间的平衡。具体来说,你可以将DCT系数进行量化,然后设置一个量化参数Q,通过调整Q的大小来控制压缩比率和图像质量之间的平衡。一般来说,Q的值越大,压缩比率就越小,图像质量就越好,反之亦然。
下面是一个简单的基于DCT的图像压缩代码示例,你可以根据需要进行修改和优化:
```python
import numpy as np
import cv2
from scipy.fftpack import dct, idct
def dct2(a):
return dct(dct(a, axis=0, norm='ortho'), axis=1, norm='ortho')
def idct2(a):
return idct(idct(a, axis=0, norm='ortho'), axis=1, norm='ortho')
def compress_image(im, Q):
# 对图像进行DCT变换
imF = dct2(im)
# 设置量化矩阵
QM = np.array([[16, 11, 10, 16, 24, 40, 51, 61],
[12, 12, 14, 19, 26, 58, 60, 55],
[14, 13, 16, 24, 40, 57, 69, 56],
[14, 17, 22, 29, 51, 87, 80, 62],
[18, 22, 37, 56, 68, 109, 103, 77],
[24, 35, 55, 64, 81, 104, 113, 92],
[49, 64, 78, 87, 103, 121, 120, 101],
[72, 92, 95, 98, 112, 100, 103, 99]])
# 进行量化
imQ = np.round(imF / (QM * Q))
# 对图像进行IDCT变换
im1 = idct2(imQ)
# 限制像素值在0到255之间
im1 = np.clip(im1, 0, 255)
im1 = im1.astype(np.uint8)
return im1
# 读取图像
im = cv2.imread('lena.png', cv2.IMREAD_GRAYSCALE)
# 设置量化参数Q
Q = 50
# 进行图像压缩
im1 = compress_image(im, Q)
# 计算压缩比率
cr = im.size / (im1.size * np.ceil(np.log2(Q)))
# 计算PSNR和SSIM
psnr = peak_signal_noise_ratio(im, im1)
ssim = structural_similarity(im, im1, multichannel=False)
# 输出结果
print('压缩比率: {:.2f}'.format(cr))
print('PSNR: {:.2f}'.format(psnr))
print('SSIM: {:.2f}'.format(ssim))
```
在上面的代码中,你可以调整量化参数Q的大小来控制压缩比率和图像质量之间的平衡。同时,通过计算PSNR和SSIM等指标,可以对压缩后的图像质量进行评估。
阅读全文