使用deepspeech2写代码,用给定的aishell数据集进行语音识别模型搭建
时间: 2023-06-17 09:07:36 浏览: 573
首先,你需要下载并准备好aishell数据集,可以从官网下载:http://www.openslr.org/33/。
然后,你需要安装deepSpeech2的依赖项,可以使用以下命令:
```
pip install tensorflow-gpu==1.15.2
pip install scipy librosa pandas pydub matplotlib
```
接下来,你需要下载DeepSpeech2的源代码:
```
git clone https://github.com/SeanNaren/deepspeech.pytorch.git
```
然后,你需要进入代码目录并下载KenLM语言模型:
```
cd deepspeech.pytorch/data/lm
wget http://www.openslr.org/resources/11/3-gram.pruned.1e-7.arpa.gz
gunzip 3-gram.pruned.1e-7.arpa.gz
```
接下来,你需要将aishell数据集解压到指定的目录,并使用以下命令生成数据集的csv文件:
```
python deepspeech.pytorch/bin/import_aishell.py /path/to/aishell/data /path/to/output
```
然后,你需要使用以下命令训练语音识别模型:
```
python deepspeech.pytorch/train.py --train-manifest /path/to/output/train.csv --val-manifest /path/to/output/dev.csv --cuda --epochs 50
```
训练完成后,你可以使用以下命令进行推理:
```
python deepspeech.pytorch/inference.py --model-path /path/to/model.pth --audio-path /path/to/audio.wav
```
以上就是使用deepspeech2搭建语音识别模型的基本步骤,如果你想要更深入的了解,请参考deepSpeech2的官方文档。
阅读全文
相关推荐


















