聚类协同过滤python
时间: 2023-08-29 18:12:42 浏览: 92
聚类协同过滤是一种基于聚类算法和协同过滤算法的推荐算法。它将用户和物品分别聚类,然后在每个聚类中进行协同过滤推荐。下面是一个用Python实现的聚类协同过滤算法示例:
```python
import numpy as np
from sklearn.cluster import KMeans
from scipy.spatial.distance import cdist
# 构造用户物品矩阵
X = np.array([[1, 0, 2, 3], [2, 3, 1, 0], [0, 1, 3, 2], [3, 2, 0, 1]])
# 聚类用户
kmeans_user = KMeans(n_clusters=2).fit(X)
labels_user = kmeans_user.labels_
centers_user = kmeans_user.cluster_centers_
# 聚类物品
kmeans_item = KMeans(n_clusters=2).fit(X.T)
labels_item = kmeans_item.labels_
centers_item = kmeans_item.cluster_centers_
# 计算每个用户与聚类中心的距离
dist_user = cdist(X, centers_user)
# 计算每个物品与聚类中心的距离
dist_item = cdist(X.T, centers_item)
# 生成每个用户和物品所属的聚类
labels_user_new = np.argmin(dist_user, axis=1)
labels_item_new = np.argmin(dist_item, axis=1)
# 构造新的用户物品矩阵
X_new = np.zeros(X.shape)
for u in range(X.shape[0]):
for i in range(X.shape[1]):
X_new[u, i] = centers_user[labels_user_new[u], labels_item_new[i]]
# 使用协同过滤算法推荐物品
similarity = np.dot(X_new.T, X_new) / np.dot(X_new.T.sum(axis=1, keepdims=True), X_new.sum(axis=0, keepdims=True))
scores = np.dot(X_new, similarity) / np.sum(np.abs(similarity), axis=1, keepdims=True)
# 打印推荐结果
print(scores)
```
在上面的示例中,我们首先使用KMeans算法将用户和物品聚类成两个簇。然后,我们计算每个用户和物品与聚类中心的距离,生成新的用户物品矩阵。最后,我们使用协同过滤算法推荐物品,并打印推荐结果。
阅读全文