Bear_2 除了生产小熊饼干外,又新生产了菱形饼干和正方形饼干。但是一号车间质检员张*蛋是个憨憨,他只会判断他们的边长来确定形状,众所周知这是不行的。为了让自己不失业她求助于你,请你帮忙判断一下它是哪块小饼干? 输入格式: 按顺时针输入。 输入包括 4 行,第 i 行给出两个整数 X i ​ ,Y i ​ (−100<=X i ​ ,Y i ​ <=100) 保证输入的四条边长相同 输出格式: 如果它是一个菱形饼干请输出"LX",否则请输出"ZFX",不带引号。 输入样例: 0 0 0 1 1 1 1 0 输出样例: ZFX

时间: 2024-03-17 18:47:18 浏览: 14
可以通过计算四个点之间的距离来判断菱形饼干和正方形饼干。如果有两个对边的长度相等,则是正方形饼干,否则是菱形饼干。 以下是python的代码实现: ```python import math x = [] y = [] for i in range(4): xi, yi = map(int, input().split()) x.append(xi) y.append(yi) d1 = math.sqrt((x[0]-x[2])**2 + (y[0]-y[2])**2) d2 = math.sqrt((x[1]-x[3])**2 + (y[1]-y[3])**2) if d1 == d2: print("ZFX") else: print("LX") ``` 输入样例: ``` 0 0 0 1 1 1 1 0 ``` 输出样例: ``` ZFX ```
相关问题

Bear_2 除了生产小熊饼干外,又新生产了菱形饼干和正方形饼干。但是一号车间质检员张*蛋是个憨憨,他只会判断他们的边长来确定形状,众所周知这是不行的。为了让自己不失业她求助于你,请你帮忙判断一下它是哪块小饼干? 输入格式: 按顺时针输入。 输入包括 4 行,第 i 行给出两个整数 X i ​ ,Y i ​ (−100<=X i ​ ,Y i ​ <=100) 保证输入的四条边长相同

这道题可以通过计算两条对角线的长度来判断菱形和正方形。 如果对角线长度相等,则为正方形;如果对角线长度不相等,则为菱形。 具体实现可以参考下面的代码: ```python import math # 输入4个点的坐标 points = [] for i in range(4): x, y = map(int, input().split()) points.append((x, y)) # 判断对角线长度是否相等 d1 = math.sqrt((points[0][0]-points[2][0])**2 + (points[0][1]-points[2][1])**2) d2 = math.sqrt((points[1][0]-points[3][0])**2 + (points[1][1]-points[3][1])**2) if math.isclose(d1, d2): print("It's a square") else: print("It's a diamond") ``` 其中,math.isclose() 函数用于判断浮点数是否相等,可以避免浮点数精度误差带来的问题。

C语言Bear_2 除了生产小熊饼干外,又新生产了菱形饼干和正方形饼干。但是一号车间质检员张*蛋是个憨憨,他只会判断他们的边长来确定形状,众所周知这是不行的。为了让自己不失业她求助于你,请你帮忙判断一下它是哪块小饼干? 输入格式: 按顺时针输入。 输入包括 4 行,第 i 行给出两个整数 X i ​ ,Y i ​ (−100<=X i ​ ,Y i ​ <=100) 保证输入的四条边长相同 输出格式: 如果它是一个菱形饼干请输出"LX",如果是正方形则请输出"ZFX",不带引号。

好的,这是一道关于小饼干形状的问题。根据您提供的信息,我编写了以下 C 语言代码,请您检查一下是否符合要求: ```c #include <stdio.h> int main() { int x1, y1, x2, y2, x3, y3, x4, y4; scanf("%d%d%d%d%d%d%d%d", &x1, &y1, &x2, &y2, &x3, &y3, &x4, &y4); if (x1 + x2 == x3 + x4 && y1 + y2 == y3 + y4) { if (x1 == y1 && x2 == y2 && x3 == y3 && x4 == y4) { printf("ZFX"); } else { printf("LX"); } } else { printf("ZFX"); } return 0; } ``` 这段代码会按顺时针输入小饼干的四个点的坐标,并根据这些坐标判断小饼干的形状。如果它是一个菱形饼干,再判断是否为正方形,如果是正方形则输出"ZFX",否则输出"LX"。如果它不是菱形饼干,则输出"ZFX"。

相关推荐

最新推荐

recommend-type

gateway和jwt网关认证实现过程解析

主要介绍了gateway和jwt网关认证实现过程解析,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下
recommend-type

ZED-F9P_ProductSummary_(UBX-17005151).pdf

The ZED-F9P positioning module features the u-blox F9 receiver platform, which provides multi-band GNSS to high-volume industrial applications in a compact form factor.
recommend-type

吴天雄--shiro个人总结笔记.doc

第一讲了解shiro(什么是shiro、shiro的结构体系、核心功能、shiro的架构、shiro的工作流程、RBAC模型),第二讲 用户认证和授权(demo练习),第三讲 JdbcRealm及认证策略,第四讲 与Web集成(shiro+SpringMVC),...
recommend-type

吴天雄--JavaWeb完整笔记.doc

本文档总计92页,20928个字,共分为九大模块,模块一:javaWeb入门概念(资源分类、网络通信三要素、软件架构、web服务器软件tomcat配置、虚拟路径和虚拟主机);模块二:使用eclipse和idea快速开发jsp(idea和tomcat...
recommend-type

国内移动端APP月活跃(MAU)Top5000 数据整理

国内移动端APP月活跃(MAU)Top5000 时间范围:2020年-2022年 具有一定参考价值 csv格式
recommend-type

藏经阁-应用多活技术白皮书-40.pdf

本资源是一份关于“应用多活技术”的专业白皮书,深入探讨了在云计算环境下,企业如何应对灾难恢复和容灾需求。它首先阐述了在数字化转型过程中,容灾已成为企业上云和使用云服务的基本要求,以保障业务连续性和数据安全性。随着云计算的普及,灾备容灾虽然曾经是关键策略,但其主要依赖于数据级别的备份和恢复,存在数据延迟恢复、高成本以及扩展性受限等问题。 应用多活(Application High Availability,简称AH)作为一种以应用为中心的云原生容灾架构,被提出以克服传统灾备的局限。它强调的是业务逻辑层面的冗余和一致性,能在面对各种故障时提供快速切换,确保服务不间断。白皮书中详细介绍了应用多活的概念,包括其优势,如提高业务连续性、降低风险、减少停机时间等。 阿里巴巴作为全球领先的科技公司,分享了其在应用多活技术上的实践历程,从早期集团阶段到云化阶段的演进,展示了企业在实际操作中的策略和经验。白皮书还涵盖了不同场景下的应用多活架构,如同城、异地以及混合云环境,深入剖析了相关的技术实现、设计标准和解决方案。 技术分析部分,详细解析了应用多活所涉及的技术课题,如解决的技术问题、当前的研究状况,以及如何设计满足高可用性的系统。此外,从应用层的接入网关、微服务组件和消息组件,到数据层和云平台层面的技术原理,都进行了详尽的阐述。 管理策略方面,讨论了应用多活的投入产出比,如何平衡成本和收益,以及如何通过能力保鲜保持系统的高效运行。实践案例部分列举了不同行业的成功应用案例,以便读者了解实际应用场景的效果。 最后,白皮书展望了未来趋势,如混合云多活的重要性、应用多活作为云原生容灾新标准的地位、分布式云和AIOps对多活的推动,以及在多云多核心架构中的应用。附录则提供了必要的名词术语解释,帮助读者更好地理解全文内容。 这份白皮书为企业提供了全面而深入的应用多活技术指南,对于任何寻求在云计算时代提升业务韧性的组织来说,都是宝贵的参考资源。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

MATLAB矩阵方程求解与机器学习:在机器学习算法中的应用

![matlab求解矩阵方程](https://img-blog.csdnimg.cn/041ee8c2bfa4457c985aa94731668d73.png) # 1. MATLAB矩阵方程求解基础** MATLAB中矩阵方程求解是解决线性方程组和矩阵方程的关键技术。本文将介绍MATLAB矩阵方程求解的基础知识,包括矩阵方程的定义、求解方法和MATLAB中常用的求解函数。 矩阵方程一般形式为Ax=b,其中A为系数矩阵,x为未知数向量,b为常数向量。求解矩阵方程的过程就是求解x的值。MATLAB提供了多种求解矩阵方程的函数,如solve、inv和lu等。这些函数基于不同的算法,如LU分解
recommend-type

触发el-menu-item事件获取的event对象

触发`el-menu-item`事件时,会自动传入一个`event`对象作为参数,你可以通过该对象获取触发事件的具体信息,例如触发的元素、鼠标位置、键盘按键等。具体可以通过以下方式获取该对象的属性: 1. `event.target`:获取触发事件的目标元素,即`el-menu-item`元素本身。 2. `event.currentTarget`:获取绑定事件的元素,即包含`el-menu-item`元素的`el-menu`组件。 3. `event.key`:获取触发事件时按下的键盘按键。 4. `event.clientX`和`event.clientY`:获取触发事件时鼠标的横纵坐标
recommend-type

藏经阁-阿里云计算巢加速器:让优秀的软件生于云、长于云-90.pdf

阿里云计算巢加速器是阿里云在2022年8月飞天技术峰会上推出的一项重要举措,旨在支持和服务于企业服务领域的创新企业。通过这个平台,阿里云致力于构建一个开放的生态系统,帮助软件企业实现从云端诞生并持续成长,增强其竞争力。该加速器的核心价值在于提供1对1的技术专家支持,确保ISV(独立软件供应商)合作伙伴能获得与阿里云产品同等的技术能力,从而保障用户体验的一致性。此外,入选的ISV还将享有快速在钉钉和云市场上线的绿色通道,以及与行业客户和投资机构的对接机会,以加速业务发展。 活动期间,包括百奥利盟、极智嘉、EMQ、KodeRover、MemVerge等30家企业成为首批计算巢加速器成员,与阿里云、钉钉以及投资界专家共同探讨了技术进步、产品融合、战略规划和资本市场的关键议题。通过这次合作,企业可以借助阿里云的丰富资源和深厚技术实力,应对数字化转型中的挑战,比如精准医疗中的数据处理加速、物流智慧化的升级、数字孪生的普及和云原生图数据库的构建。 阿里云计算巢加速器不仅是一个技术支持平台,也是企业成长的催化剂。它通过举办类似2023年2月的集结活动,展示了如何通过云计算生态的力量,帮助企业在激烈的竞争中找到自己的定位,实现可持续发展。参与其中的优秀企业如神策和ONES等,都在这个平台上得到了加速和赋能,共同推动了企业服务领域的创新与进步。总结来说,阿里云计算巢加速器是一个集技术、资源和生态支持于一体的全方位服务平台,旨在帮助企业软件产业在云端绽放光彩。