使用python语言,帮我写一个完整的将.onnx权重文件转换为.trt文件的python代码
时间: 2024-04-17 21:26:15 浏览: 178
当然,下面是一个完整的Python代码示例,使用TensorRT将.onnx权重文件转换为.trt文件:
```python
import tensorrt as trt
import pycuda.driver as cuda
import pycuda.autoinit
def convert_onnx_to_trt(onnx_file_path, trt_file_path):
TRT_LOGGER = trt.Logger(trt.Logger.WARNING)
builder = trt.Builder(TRT_LOGGER)
network = builder.create_network()
parser = trt.OnnxParser(network, TRT_LOGGER)
with open(onnx_file_path, 'rb') as f:
if not parser.parse(f.read()):
for error in range(parser.num_errors):
print(parser.get_error(error))
builder.max_workspace_size = 1 << 30
builder.max_batch_size = 1
builder.fp16_mode = True # Enable FP16 mode if supported
engine = builder.build_cuda_engine(network)
trt.save_engine_to_file(engine, trt_file_path)
print("TensorRT engine is successfully created and saved to", trt_file_path)
if __name__ == '__main__':
onnx_file_path = 'path/to/your_model.onnx'
trt_file_path = 'path/to/save/your_model.trt'
convert_onnx_to_trt(onnx_file_path, trt_file_path)
```
请确保你已经正确安装了TensorRT和pycuda库,并将`onnx_file_path`和`trt_file_path`替换为你的实际文件路径。此代码将加载.onnx权重文件并将其转换为.trt文件,使用FP16模式进行优化,并保存到指定的文件路径中。
阅读全文