生成stm32用两个按键控制步进电机正反转固定角度的程序

时间: 2023-09-25 10:16:31 浏览: 46
以下是一个简单的程序,它使用两个按键来控制步进电机的正反转,并使其旋转固定角度。 ```c #include <stdio.h> #include <stdlib.h> #include "stm32f10x.h" #define STEPPER_PIN1 GPIO_Pin_0 #define STEPPER_PIN2 GPIO_Pin_1 #define STEPPER_PIN3 GPIO_Pin_2 #define STEPPER_PIN4 GPIO_Pin_3 #define BUTTON1_PIN GPIO_Pin_4 #define BUTTON2_PIN GPIO_Pin_5 #define STEPS_PER_REVOLUTION 200 // 步进电机每转一圈所需的步数 #define ANGLE_PER_STEP 1.8 // 每步的角度 GPIO_InitTypeDef GPIO_InitStructure; void delay(int time) { int i, j; for (i = 0; i < time; i++) { for (j = 0; j < 1000; j++); } } void stepper_init() { RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA, ENABLE); GPIO_InitStructure.GPIO_Pin = STEPPER_PIN1 | STEPPER_PIN2 | STEPPER_PIN3 | STEPPER_PIN4; GPIO_InitStructure.GPIO_Mode = GPIO_Mode_Out_PP; GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz; GPIO_Init(GPIOA, &GPIO_InitStructure); } void button_init() { RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOB, ENABLE); GPIO_InitStructure.GPIO_Pin = BUTTON1_PIN | BUTTON2_PIN; GPIO_InitStructure.GPIO_Mode = GPIO_Mode_IPU; GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz; GPIO_Init(GPIOB, &GPIO_InitStructure); } void step(int dir) { static int stepCount = 0; if (dir == 1) { // 正转 switch (stepCount % 4) { case 0: GPIO_SetBits(GPIOA, STEPPER_PIN1); GPIO_ResetBits(GPIOA, STEPPER_PIN2 | STEPPER_PIN3 | STEPPER_PIN4); break; case 1: GPIO_SetBits(GPIOA, STEPPER_PIN1 | STEPPER_PIN2); GPIO_ResetBits(GPIOA, STEPPER_PIN3 | STEPPER_PIN4); break; case 2: GPIO_SetBits(GPIOA, STEPPER_PIN2); GPIO_ResetBits(GPIOA, STEPPER_PIN1 | STEPPER_PIN3 | STEPPER_PIN4); break; case 3: GPIO_SetBits(GPIOA, STEPPER_PIN3); GPIO_ResetBits(GPIOA, STEPPER_PIN1 | STEPPER_PIN2 | STEPPER_PIN4); break; } stepCount++; } else { // 反转 switch (stepCount % 4) { case 0: GPIO_SetBits(GPIOA, STEPPER_PIN4); GPIO_ResetBits(GPIOA, STEPPER_PIN1 | STEPPER_PIN2 | STEPPER_PIN3); break; case 1: GPIO_SetBits(GPIOA, STEPPER_PIN3 | STEPPER_PIN4); GPIO_ResetBits(GPIOA, STEPPER_PIN1 | STEPPER_PIN2); break; case 2: GPIO_SetBits(GPIOA, STEPPER_PIN2); GPIO_ResetBits(GPIOA, STEPPER_PIN1 | STEPPER_PIN3 | STEPPER_PIN4); break; case 3: GPIO_SetBits(GPIOA, STEPPER_PIN1); GPIO_ResetBits(GPIOA, STEPPER_PIN2 | STEPPER_PIN3 | STEPPER_PIN4); break; } stepCount--; } delay(1000); // 等待电机旋转到下一个位置 } int main(void) { int angle = 0; int button1State, button2State; stepper_init(); button_init(); while (1) { button1State = GPIO_ReadInputDataBit(GPIOB, BUTTON1_PIN); button2State = GPIO_ReadInputDataBit(GPIOB, BUTTON2_PIN); if (button1State == 0) { // 按钮1按下 step(1); // 正转 angle += ANGLE_PER_STEP; } else if (button2State == 0) { // 按钮2按下 step(0); // 反转 angle -= ANGLE_PER_STEP; } if (angle == 360) { // 旋转一圈后复位角度 angle = 0; } if (angle == -360) { angle = 0; } } } ``` 说明: - `stepper_init()`函数初始化了四个GPIO引脚,分别用于控制步进电机的四个线圈。 - `button_init()`函数初始化了两个GPIO引脚,分别用于接收两个按键的输入信号。 - `step()`函数根据传入的参数 `dir` 来控制步进电机的正反转,每旋转一个步进角度之后等待1秒钟,以便电机旋转到下一个位置。 - 在主循环中,首先读取两个按键的状态,如果 `button1State` 为低电平,则调用 `step()` 函数使步进电机正转,并将角度增加一个步进角度。如果 `button2State` 为低电平,则调用 `step()` 函数使步进电机反转,并将角度减少一个步进角度。当角度达到360度时,复位角度值。 注意: - 上述程序仅供参考,实际使用时需要根据具体步进电机的型号和驱动方式进行修改。 - 在使用步进电机时,应注意电机的额定电流和控制电压,以免电机损坏。

相关推荐

最新推荐

recommend-type

基于STM32的微型步进电机驱动控制器设计

设计了一种微型步进电机驱动控制器,通过...该设计以STM32F103T8U6作为主控制器,以A4988步进电机驱动设备,上位机串口界面作为人机接口界面,详细分析步进电机驱动设备的工作原理、各部分接口电路以及控制器设计方案。
recommend-type

基于STM32步进电机加减速控制查表法

步进电机加减速查表法 1.流程图 2,代码段 1.码盘 const UNBIT16 CarAccelerationList[CAR_ACCELERATION_STEP_MAX + 1] = { 1897,786,603,508,448,405,372,347,326,308, 293,280,268,258,249,241,234,227,221,...
recommend-type

基于STM32的步进电机多轴速度控制方法研究与实现_王昊天.pdf

STM电机控制理论-基于STM32的步进电机多轴速度控制方法研究与实现 在机器人多轴电机控制过程中,发现带载情况下如果电机起步速度过快会导致电机堵转问题,很需要一种可以实现电 机匀加速的精确控制方法;文章借助...
recommend-type

STM32 按键检测程序

PA13 PA15 是JTAG的引脚。 所以JTAG 插上 模拟时候,不准去的。...只有调到SWD 模式 PA15 才能用。 PA13是SWDIO PA14 SWCLK 复用时候一定要注意。实验结果: DS0 交替闪烁 当按下KEY1 时候 DS1亮。 松手灭。
recommend-type

STM32单片机解码NEC红外控制器C语言程序

红外遥控器发射码值的协议有很多种,在百度文库里搜“史​上​最​全​的​红​外​遥​控​器​编​码​协​议”,可以看到是有43种,但是我们今天是解码NEC红外协议的,...我是用的定时器配合外部中断写的解码程序。
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

实现实时数据湖架构:Kafka与Hive集成

![实现实时数据湖架构:Kafka与Hive集成](https://img-blog.csdnimg.cn/img_convert/10eb2e6972b3b6086286fc64c0b3ee41.jpeg) # 1. 实时数据湖架构概述** 实时数据湖是一种现代数据管理架构,它允许企业以低延迟的方式收集、存储和处理大量数据。与传统数据仓库不同,实时数据湖不依赖于预先定义的模式,而是采用灵活的架构,可以处理各种数据类型和格式。这种架构为企业提供了以下优势: - **实时洞察:**实时数据湖允许企业访问最新的数据,从而做出更明智的决策。 - **数据民主化:**实时数据湖使各种利益相关者都可
recommend-type

用matlab绘制高斯色噪声情况下的频率估计CRLB,其中w(n)是零均值高斯色噪声,w(n)=0.8*w(n-1)+e(n),e(n)服从零均值方差为se的高斯分布

以下是用matlab绘制高斯色噪声情况下频率估计CRLB的代码: ```matlab % 参数设置 N = 100; % 信号长度 se = 0.5; % 噪声方差 w = zeros(N,1); % 高斯色噪声 w(1) = randn(1)*sqrt(se); for n = 2:N w(n) = 0.8*w(n-1) + randn(1)*sqrt(se); end % 计算频率估计CRLB fs = 1; % 采样频率 df = 0.01; % 频率分辨率 f = 0:df:fs/2; % 频率范围 M = length(f); CRLB = zeros(M,1); for
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。