{ "size": 0, "aggs": { "group_by_city": { "terms": { "field": "source.geo.city_name", "size": 100 }, "aggs": { "unique_ips": { "cardinality": { "field": "source.ip" } }, "sort_by_unique_ips": { "bucket_sort": { "sort": [ { "unique_ips": { "order": "desc" } } ], "size": 10 } } } } } } 怎么用java api完成这个查询
时间: 2023-07-06 12:37:41 浏览: 116
可以使用Elasticsearch官方提供的Java客户端API来完成这个查询。以下是一个示例代码:
```java
import org.elasticsearch.action.search.SearchRequest;
import org.elasticsearch.action.search.SearchResponse;
import org.elasticsearch.client.RequestOptions;
import org.elasticsearch.client.RestHighLevelClient;
import org.elasticsearch.common.unit.ByteSizeUnit;
import org.elasticsearch.common.unit.TimeValue;
import org.elasticsearch.index.query.QueryBuilders;
import org.elasticsearch.search.aggregations.AggregationBuilders;
import org.elasticsearch.search.aggregations.bucket.terms.TermsAggregationBuilder;
import org.elasticsearch.search.aggregations.metrics.cardinality.CardinalityAggregationBuilder;
import org.elasticsearch.search.aggregations.pipeline.bucketmetrics.BucketSortPipelineAggregationBuilder;
import org.elasticsearch.search.builder.SearchSourceBuilder;
import java.io.IOException;
public class ElasticsearchAggregationExample {
public static void main(String[] args) throws IOException {
RestHighLevelClient client = new RestHighLevelClient();
SearchRequest searchRequest = new SearchRequest("my-index");
SearchSourceBuilder searchSourceBuilder = new SearchSourceBuilder();
// 设置查询条件
searchSourceBuilder.query(QueryBuilders.matchAllQuery());
// 构建聚合查询
TermsAggregationBuilder groupByCity =
AggregationBuilders.terms("group_by_city")
.field("source.geo.city_name")
.size(100)
.subAggregation(
AggregationBuilders.cardinality("unique_ips")
.field("source.ip")
)
.subAggregation(
new BucketSortPipelineAggregationBuilder("sort_by_unique_ips")
.sort(
AggregationBuilders
.subAggregation("unique_ips")
.order("desc")
)
.size(10)
.from(0)
.gapPolicy(BucketSortPipelineAggregationBuilder.GapPolicy.SKIP)
);
searchSourceBuilder.aggregation(groupByCity);
// 设置查询参数
searchSourceBuilder.size(0);
searchSourceBuilder.timeout(new TimeValue(60, TimeUnit.SECONDS));
searchSourceBuilder.trackTotalHits(true);
searchRequest.source(searchSourceBuilder);
// 执行查询
SearchResponse searchResponse = client.search(searchRequest, RequestOptions.DEFAULT);
// 处理查询结果
// ...
client.close();
}
}
```
以上代码中,首先创建了一个`RestHighLevelClient`对象,然后创建了一个`SearchRequest`对象,并设置了查询的索引名为`my-index`。接着使用`SearchSourceBuilder`构建了查询条件,这里使用了一个`matchAllQuery`来查询所有文档。
接下来,使用`AggregationBuilders`构建了一个聚合查询,这个聚合查询包含了一个`terms`聚合和两个子聚合。`terms`聚合按照`source.geo.city_name`字段进行分组,并设置了分组大小为`100`。其中,第一个子聚合是一个`cardinality`聚合,用于计算每个分组中不同的`source.ip`的数量。第二个子聚合是一个`bucket_sort`聚合,用于根据第一个子聚合的结果进行排序,并只返回前`10`个分组。
最后,将构建好的查询对象执行查询,并对查询结果进行处理。注意,在实际使用中需要根据具体情况来设置查询参数和处理查询结果。
阅读全文