编写MATLAB代码实现3个神经元的Hofield网络,设计2个稳定点(-1,1,-1)、(1,-1,-1),产生测试矢量(状态)实现联想记忆产生P=[-0.7 -0.5 -0.3 0.9 0.7 -0.3 0.4 0.2; 0.8 0.6 0.5 -0.9 -0.5 -0.2 -0.1 -0.2; -0.6 0.5 0.7 0.8 0.9 -0.5 0.6 -0.3]8组测试样本(矢量),利用建立的Hofield网络进行测试,并画出状态变化的轨迹产生P=[-0.7 -0.5 -0.3 0.9 0.7 -0.3 0.4 0.2; 0.8 0.6 0.5 -0.9 -0.5 -0.2 -0.1 -0.2; -0.6 0.5 0.7 0.8 0.9 -0.5 0.6 -0.3]8组测试样本(矢量),利用建立的Hofield网络进行测试,并画出状态变化的轨迹
时间: 2023-09-20 15:10:58 浏览: 114
基于Matlab实现hopfield神经网络(源码).rar
5星 · 资源好评率100%
以下是一个MATLAB代码示例,实现了3个神经元的Hofield网络,设计了2个稳定点(-1,1,-1)、(1,-1,-1),并能够通过测试矢量实现联想记忆,同时绘制了状态变化的轨迹。其中,测试样本P=[-0.7 -0.5 -0.3 0.9 0.7 -0.3 0.4 0.2; 0.8 0.6 0.5 -0.9 -0.5 -0.2 -0.1 -0.2; -0.6 0.5 0.7 0.8 0.9 -0.5 0.6 -0.3],共8组。代码注释中有详细的说明,请参考:
```matlab
% 初始化网络参数
w = rand(3,3); % 权重矩阵,采用随机数生成的方式初始化
theta = rand(1,3); % 阈值向量,采用随机数生成的方式初始化
% 训练网络,使用Hebbian学习规则
x1 = [-1 1 -1]; % 稳定点1
x2 = [1 -1 -1]; % 稳定点2
for i = 1:1000 % 迭代1000次
% 随机选择一个稳定点作为输入状态
if rand() < 0.5
x = x1;
else
x = x2;
end
% 计算网络的响应
y = sign(w * x' - theta);
% 更新权重矩阵
w = w + y' * x;
% 更新阈值向量
theta = theta + y;
end
% 测试网络,绘制状态变化轨迹
P = [-0.7 -0.5 -0.3 0.9 0.7 -0.3 0.4 0.2;
0.8 0.6 0.5 -0.9 -0.5 -0.2 -0.1 -0.2;
-0.6 0.5 0.7 0.8 0.9 -0.5 0.6 -0.3]; % 测试样本矩阵
figure; hold on; % 绘制图像
for i = 1:size(P,2) % 对每个测试样本进行测试
x_test = P(:,i)'; % 测试矢量
y_test = sign(w * x_test' - theta); % 计算网络的响应
% 绘制状态变化的轨迹
x_traj = [x_test(1)]; y_traj = [x_test(2)]; z_traj = [x_test(3)];
for j = 1:100 % 迭代100次,绘制状态变化的轨迹
y_traj(end+1) = sign(w * [x_traj(end), y_traj(end), z_traj(end)]' - theta(2));
x_traj(end+1) = sign(w * [x_traj(end), y_traj(end), z_traj(end)]' - theta(1));
z_traj(end+1) = sign(w * [x_traj(end), y_traj(end), z_traj(end)]' - theta(3));
end
plot3(x_traj, y_traj, z_traj); % 绘制状态变化轨迹
% 输出测试结果
disp(['测试矢量', num2str(i), ':', num2str(x_test)]);
if isequal(y_test, x1')
disp(['网络的响应', num2str(i), ':稳定点1']);
elseif isequal(y_test, x2')
disp(['网络的响应', num2str(i), ':稳定点2']);
else
disp(['网络的响应', num2str(i), ':未知状态']);
end
end
xlabel('x'); ylabel('y'); zlabel('z'); % 绘制坐标轴
title('状态变化轨迹'); % 绘制标题
```
需要注意的是,这个代码示例仅作为参考,实际应用中可能需要根据具体情况进行调整和优化。同时,绘制出的状态变化轨迹可能会比较混乱,需要仔细观察。
阅读全文