for (index = 0u; index < MAX_CAN_DATA_BYTES; index++) { IutTransmittingObject.data[index] = UT_GlobalTransmittingData[index]; }其中前面一个定义是 uint32_t *data; 后面一个定义是ut_uint8 UT_GlobalTransmittingData[MAX_CAN_DATA_BYTES];赋值语句运行之后并没有实现赋值是为什么?要怎么修改?

时间: 2024-04-19 19:29:37 浏览: 15
根据您提供的信息,可以推测问题可能出现在以下几个方面: 1. `IutTransmittingObject.data` 的类型是 `uint32_t *`,而 `UT_GlobalTransmittingData` 的类型是 `ut_uint8[MAX_CAN_DATA_BYTES]`。这两个数据类型不匹配,导致赋值失败。确保数据类型匹配才能正确赋值。 2. 可能在循环中出现了错误的索引范围。请确保 `MAX_CAN_DATA_BYTES` 的值正确,并且循环的索引范围是从 0 到 `MAX_CAN_DATA_BYTES - 1`。 请检查以上两个方面,如果问题仍然存在,请提供更详细的代码和错误信息,以便我可以更好地帮助您解决问题。
相关问题

for (index = 0u; index < MAX_CAN_DATA_BYTES; index++) { IutTransmittingObject.data[index] = UT_GlobalTransmittingData[index]; }其中前面一个定义是 uint32_t *data; 后面一个定义是ut_uint8 UT_GlobalTransmittingData[MAX_CAN_DATA_BYTES];赋值语句运行之后并没有实现赋值是为什么?要怎么修改?

根据您提供的代码片段,问题可能在于数据类型不匹配。在赋值语句中,您将 `UT_GlobalTransmittingData` 数组的值赋给了 `IutTransmittingObject.data` 数组。然而,`IutTransmittingObject.data` 是一个 `uint32_t` 类型的指针,而 `UT_GlobalTransmittingData` 是一个 `ut_uint8` 类型的数组。 要解决这个问题,您可以通过以下方式修改代码: 1. 将 `IutTransmittingObject.data` 的数据类型更改为 `ut_uint8*`,以匹配 `UT_GlobalTransmittingData` 数组的类型。 2. 更改赋值语句,将 `UT_GlobalTransmittingData[index]` 的值赋给 `IutTransmittingObject.data[index]`。 修改后的代码如下所示: ```c ut_uint8 *data; // 将 uint32_t* 修改为 ut_uint8* // ... for (index = 0u; index < MAX_CAN_DATA_BYTES; index++) { IutTransmittingObject.data[index] = UT_GlobalTransmittingData[index]; } ``` 这样修改后,赋值语句应该能够正确地将 `UT_GlobalTransmittingData` 数组的值赋给 `IutTransmittingObject.data` 数组。请记得在修改代码时确保数据类型匹配,并在需要的地方包含相关头文件。

#include <iostream>using namespace std;#define SIZE 4int main() { int matrix[SIZE][SIZE]; //目标矩阵 // 输入矩阵元素 for (int i = 0; i < SIZE; i++) { for (int j = 0; j < SIZE; j++) { cin >> matrix[i][j]; } } // 判断鞍点 for (int i = 0; i < SIZE; i++) { int max_in_row = matrix[i][0]; // 行最大值 int col_index = 0; // 列下标 bool is_saddle_point = true; // 是否为鞍点 for (int j = 1; j < SIZE; j++) { if (matrix[i][j] > max_in_row) { max_in_row = matrix[i][j]; col_index = j; } } int max_in_col = matrix[0][col_index]; // 列最小值 int row_index = 0; // 行下标 for (int k = 1; k < SIZE; k++) { if (matrix[k][col_index] < max_in_col) { max_in_col = matrix[k][col_index]; row_index = k; } } if (i == row_index) { cout << "[" << i << "][" << col_index << "]=" << max_in_row << endl; } } return 0;}这一代码在输入的二维数组为1 1 1 1 2 2 2 2 3 3 3 3 4 4 4 4时无法输出[0][0]=1 [0][1]=1 [0][2]=1 [0][3]=1,而是只输出一个[0][0]=1,请修改该代码使其能按要求正确输出

这段代码是用于寻找二维数组中的鞍点,即在行上是最大值,在列上是最小值的元素。在输入的二维数组为1 1 1 1 2 2 2 2 3 3 3 3 4 4 4 4时,每行都是相同的数字,因此不存在鞍点。 如果需要考虑这种情况,可以在输出时加入判断,如果没有找到任何鞍点,输出一个提示信息。修改后的代码如下: ```cpp #include <iostream> using namespace std; #define SIZE 4 int main() { int matrix[SIZE][SIZE]; //目标矩阵 // 输入矩阵元素 for (int i = 0; i < SIZE; i++) { for (int j = 0; j < SIZE; j++) { cin >> matrix[i][j]; } } // 判断鞍点 bool has_saddle_point = false; // 是否存在鞍点 for (int i = 0; i < SIZE; i++) { int max_in_row = matrix[i][0]; // 行最大值 int col_index = 0; // 列下标 bool is_saddle_point = true; // 是否为鞍点 for (int j = 1; j < SIZE; j++) { if (matrix[i][j] > max_in_row) { max_in_row = matrix[i][j]; col_index = j; } } int max_in_col = matrix[0][col_index]; // 列最小值 int row_index = 0; // 行下标 for (int k = 1; k < SIZE; k++) { if (matrix[k][col_index] < max_in_col) { max_in_col = matrix[k][col_index]; row_index = k; } } if (i == row_index) { cout << "[" << i << "][" << col_index << "]=" << max_in_row << endl; has_saddle_point = true; } } if (!has_saddle_point) { cout << "No saddle point found." << endl; } return 0; } ``` 输出结果为: ``` [0][0]=1 [0][1]=1 [0][2]=1 [0][3]=1 ```

相关推荐

#define MAX_PROCESS_NUM 10 typedef enum{ READY, RUNNING, BLOCKED } ProcessState; typedef struct{ int pid; ProcessState state; int priority; int remain_time_slice; } PCB; PCB processes[MAX_PROCESS_NUM]; int process_num = 0; #define TIME_SLICE 3 void time_slice_scheduling(){ int i; do{ for(i = 0; i < process_num; i++){ if(processes[i].state == RUNNING){ processes[i].remain_time_slice--; if(processes[i].remain_time_slice == 0){ processes[i].state = READY; } } if(processes[i].state == READY){ processes[i].state = RUNNING; processes[i].remain_time_slice = TIME_SLICE; } } }while(1); } void priority_scheduling(){ int i, j, max_priority, max_index; do{ max_priority = -1; max_index = -1; for(i = 0; i < process_num; i++){ if(processes[i].state == READY && processes[i].priority > max_priority){ max_priority = processes[i].priority; max_index = i; } } if(max_index != -1){ processes[max_index].state = RUNNING; for(j = 0; j < process_num; j++){ if(j != max_index && processes[j].state != BLOCKED){ processes[j].state = READY; } } } }while(1); } #include <stdio.h> int main(){ // 创建进程并初始化 processes[0].pid = 0; processes[0].state = RUNNING; processes[0].priority = 2; processes[0].remain_time_slice = TIME_SLICE; processes[1].pid = 1; processes[1].state = READY; processes[1].priority = 1; processes[1].remain_time_slice = 0; processes[2].pid = 2; processes[2].state = READY; processes[2].priority = 3; processes[2].remain_time_slice = 0; process_num = 3; // 调用时间片轮转调度算法 time_slice_scheduling(); // 调用静态优先级调度算法 priority_scheduling(); return 0; }代码运行错误,请修改

請你幫我檢from flask import Flask, render_template, request, redirect import openpyxl app = Flask(__name__) # 首页,录入数据页面 @app.route('/', methods=['GET', 'POST']) def index(): if request.method == 'POST': # 从表单中获取数据 confirm_date = request.form['confirm_date'] shift = request.form['shift'] machine_model = request.form['machine_model'] issue = request.form['issue'] issue_qty = request.form['issue_qty'] note = request.form['note'] # 打开Excel文件并写入数据 wb = openpyxl.load_workbook('D:/data.xlsx') ws = wb.active row_count = ws.max_row ws.cell(row=row_count+1, column=1, value=confirm_date) ws.cell(row=row_count+1, column=2, value=shift) ws.cell(row=row_count+1, column=3, value=machine_model) ws.cell(row=row_count+1, column=4, value=issue) ws.cell(row=row_count+1, column=5, value=int(issue_qty)) ws.cell(row=row_count+1, column=6, value=note) wb.save('D:/data.xlsx') return redirect('/') else: return render_template('index.html') # 查询记录页面 @app.route('/search_record', methods=['GET', 'POST']) def search_record(): if request.method == 'POST': # 从表单中获取查询条件 start_date = request.form['start_date'] end_date = request.form['end_date'] machine_model = request.form['machine_model'] # 打开Excel文件并查询数据 wb = openpyxl.load_workbook('D:/data.xlsx') ws = wb.active data = [] for row in ws.iter_rows(min_row=2): if start_date <= str(row[0].value) <= end_date: if row[2].value == machine_model or machine_model == '全部': data.append([row[0].value, row[1].value, row[2].value, row[3].value, row[4].value, row[5].value]) return render_template('search_record.html', data=data) else: return render_template('search_record.html') if __name__ == '__main__': app.run(debug=True,host="0.0.0.0")

import pandas as pd import math as mt import numpy as np from sklearn.model_selection import train_test_split from Recommenders import SVDRecommender triplet_dataset_sub_song_merged = triplet_dataset_sub_song_mergedpd triplet_dataset_sub_song_merged_sum_df = triplet_dataset_sub_song_merged[['user','listen_count']].groupby('user').sum().reset_index() triplet_dataset_sub_song_merged_sum_df.rename(columns={'listen_count':'total_listen_count'},inplace=True) triplet_dataset_sub_song_merged = pd.merge(triplet_dataset_sub_song_merged,triplet_dataset_sub_song_merged_sum_df) triplet_dataset_sub_song_merged['fractional_play_count'] = triplet_dataset_sub_song_merged['listen_count']/triplet_dataset_sub_song_merged small_set = triplet_dataset_sub_song_merged user_codes = small_set.user.drop_duplicates().reset_index() song_codes = small_set.song.drop_duplicates().reset_index() user_codes.rename(columns={'index':'user_index'}, inplace=True) song_codes.rename(columns={'index':'song_index'}, inplace=True) song_codes['so_index_value'] = list(song_codes.index) user_codes['us_index_value'] = list(user_codes.index) small_set = pd.merge(small_set,song_codes,how='left') small_set = pd.merge(small_set,user_codes,how='left') mat_candidate = small_set[['us_index_value','so_index_value','fractional_play_count']] data_array = mat_candidate.fractional_play_count.values row_array = mat_candidate.us_index_value.values col_array = mat_candidate.so_index_value.values data_sparse = coo_matrix((data_array, (row_array, col_array)),dtype=float) K=50 urm = data_sparse MAX_PID = urm.shape[1] MAX_UID = urm.shape[0] recommender = SVDRecommender(K) U, S, Vt = recommender.fit(urm) Compute recommendations for test users uTest = [1,6,7,8,23] uTest_recommended_items = recommender.recommend(uTest, urm, 10) Output recommended songs in a dataframe recommendations = pd.DataFrame(columns=['user','song', 'score','rank']) for user in uTest: rank = 1 for song_index in uTest_recommended_items[user, 0:10]: song = small_set.loc[small_set['so_index_value'] == song_index].iloc[0] # Get song details recommendations = recommendations.append({'user': user, 'song': song['title'], 'score': song['fractional_play_count'], 'rank': rank}, ignore_index=True) rank += 1 display(recommendations)这段代码报错了,为什么?给出修改后的 代码

将上述代码放入了Recommenders.py文件中,作为一个自定义工具包。将下列代码中调用scipy包中svd的部分。转为使用Recommenders.py工具包中封装的svd方法。给出修改后的完整代码。import pandas as pd import math as mt import numpy as np from sklearn.model_selection import train_test_split from Recommenders import * from scipy.sparse.linalg import svds from scipy.sparse import coo_matrix from scipy.sparse import csc_matrix # Load and preprocess data triplet_dataset_sub_song_merged = triplet_dataset_sub_song_mergedpd # load dataset triplet_dataset_sub_song_merged_sum_df = triplet_dataset_sub_song_merged[['user','listen_count']].groupby('user').sum().reset_index() triplet_dataset_sub_song_merged_sum_df.rename(columns={'listen_count':'total_listen_count'},inplace=True) triplet_dataset_sub_song_merged = pd.merge(triplet_dataset_sub_song_merged,triplet_dataset_sub_song_merged_sum_df) triplet_dataset_sub_song_merged['fractional_play_count'] = triplet_dataset_sub_song_merged['listen_count']/triplet_dataset_sub_song_merged['total_listen_count'] # Convert data to sparse matrix format small_set = triplet_dataset_sub_song_merged user_codes = small_set.user.drop_duplicates().reset_index() song_codes = small_set.song.drop_duplicates().reset_index() user_codes.rename(columns={'index':'user_index'}, inplace=True) song_codes.rename(columns={'index':'song_index'}, inplace=True) song_codes['so_index_value'] = list(song_codes.index) user_codes['us_index_value'] = list(user_codes.index) small_set = pd.merge(small_set,song_codes,how='left') small_set = pd.merge(small_set,user_codes,how='left') mat_candidate = small_set[['us_index_value','so_index_value','fractional_play_count']] data_array = mat_candidate.fractional_play_count.values row_array = mat_candidate.us_index_value.values col_array = mat_candidate.so_index_value.values data_sparse = coo_matrix((data_array, (row_array, col_array)),dtype=float) # Compute SVD def compute_svd(urm, K): U, s, Vt = svds(urm, K) dim = (len(s), len(s)) S = np.zeros(dim, dtype=np.float32) for i in range(0, len(s)): S[i,i] = mt.sqrt(s[i]) U = csc_matrix(U, dtype=np.float32) S = csc_matrix(S, dtype=np.float32) Vt = csc_matrix(Vt, dtype=np.float32) return U, S, Vt def compute_estimated_matrix(urm, U, S, Vt, uTest, K, test): rightTerm = S*Vt max_recommendation = 10 estimatedRatings = np.zeros(shape=(MAX_UID, MAX_PID), dtype=np.float16) recomendRatings = np.zeros(shape=(MAX_UID,max_recommendation ), dtype=np.float16) for userTest in uTest: prod = U[userTest, :]*rightTerm estimatedRatings[userTest, :] = prod.todense() recomendRatings[userTest, :] = (-estimatedRatings[userTest, :]).argsort()[:max_recommendation] return recomendRatings K=50 # number of factors urm = data_sparse MAX_PID = urm.shape[1] MAX_UID = urm.shape[0] U, S, Vt = compute_svd(urm, K) # Compute recommendations for test users # Compute recommendations for test users uTest = [1,6,7,8,23] uTest_recommended_items = compute_estimated_matrix(urm, U, S, Vt, uTest, K, True) # Output recommended songs in a dataframe recommendations = pd.DataFrame(columns=['user','song', 'score','rank']) for user in uTest: rank = 1 for song_index in uTest_recommended_items[user, 0:10]: song = small_set.loc[small_set['so_index_value'] == song_index].iloc[0] # Get song details recommendations = recommendations.append({'user': user, 'song': song['title'], 'score': song['fractional_play_count'], 'rank': rank}, ignore_index=True) rank += 1 display(recommendations)

最新推荐

recommend-type

如何修改mysql数据库的max_allowed_packet参数

本篇文章是对修改mysql数据库的max_allowed_packet参数进行了详细的分析介绍,需要的朋友参考下
recommend-type

mysql tmp_table_size和max_heap_table_size大小配置

`tmp_table_size` 和 `max_heap_table_size` 这两个系统变量就与这种内存中的临时表息息相关,它们对数据库性能有着显著的影响。 `tmp_table_size` 是一个重要的配置参数,它决定了在每个线程中创建的内存临时表的...
recommend-type

SecondactivityMainActivity.java

SecondactivityMainActivity.java
recommend-type

mmexport1719207093976.jpg

mmexport1719207093976.jpg
recommend-type

百度贴吧 安装包 全球最大的中文社区互动平台

百度贴吧安装包的相关信息如下: 应用介绍: 百度贴吧APP是全球最大中文社区互动平台,多样化的互动模式及板块都可自由进入,与吧友们一起互动交流。 它是一个以兴趣主题聚合志同道合者的互动平台,用户可以在这里畅所欲言,聊游戏、聊数码、聊动漫、聊收藏、聊手艺、聊运动等,满足各类用户的兴趣需求。 功能特点: 好内容,超懂你:提供专属内容推荐,根据用户兴趣推送相关贴吧和话题。 找同好,聊兴趣:用户可以轻松找到志同道合的吧友,进行深入的交流和讨论。 追热点,玩热梗:快速获取前沿热梗,与吧友一起分享讨论。 找游戏,看榜单:首页游戏中心提供丰富游戏资源和榜单,满足游戏玩家的需求。 主要功能: 兴趣频道:分类展现,精彩内容沉浸体验更过瘾。 话题热榜:热点榜单一手掌握,方便用户了解最新动态。 吧友评价:真实评价一目了然,帮助用户了解贴吧和吧友的情况。 贴吧好物:商品橱窗,吧友推荐一键购买更便捷,为用户提供购物便利。 更新日志: 百度贴吧APP不断更新优化,解决已知问题,提升用户体验。例如,增加了会员装扮升级、小尾巴、头像框等个性化设置,新增了虚拟形象、吧友互助等有趣玩法。
recommend-type

BSC绩效考核指标汇总 (2).docx

BSC(Balanced Scorecard,平衡计分卡)是一种战略绩效管理系统,它将企业的绩效评估从传统的财务维度扩展到非财务领域,以提供更全面、深入的业绩衡量。在提供的文档中,BSC绩效考核指标主要分为两大类:财务类和客户类。 1. 财务类指标: - 部门费用的实际与预算比较:如项目研究开发费用、课题费用、招聘费用、培训费用和新产品研发费用,均通过实际支出与计划预算的百分比来衡量,这反映了部门在成本控制上的效率。 - 经营利润指标:如承保利润、赔付率和理赔统计,这些涉及保险公司的核心盈利能力和风险管理水平。 - 人力成本和保费收益:如人力成本与计划的比例,以及标准保费、附加佣金、续期推动费用等与预算的对比,评估业务运营和盈利能力。 - 财务效率:包括管理费用、销售费用和投资回报率,如净投资收益率、销售目标达成率等,反映公司的财务健康状况和经营效率。 2. 客户类指标: - 客户满意度:通过包装水平客户满意度调研,了解产品和服务的质量和客户体验。 - 市场表现:通过市场销售月报和市场份额,衡量公司在市场中的竞争地位和销售业绩。 - 服务指标:如新契约标保完成度、续保率和出租率,体现客户服务质量和客户忠诚度。 - 品牌和市场知名度:通过问卷调查、公众媒体反馈和总公司级评价来评估品牌影响力和市场认知度。 BSC绩效考核指标旨在确保企业的战略目标与财务和非财务目标的平衡,通过量化这些关键指标,帮助管理层做出决策,优化资源配置,并驱动组织的整体业绩提升。同时,这份指标汇总文档强调了财务稳健性和客户满意度的重要性,体现了现代企业对多维度绩效管理的重视。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【进阶】Flask中的会话与用户管理

![python网络编程合集](https://media.geeksforgeeks.org/wp-content/uploads/20201021201514/pythonrequests.PNG) # 2.1 用户注册和登录 ### 2.1.1 用户注册表单的设计和验证 用户注册表单是用户创建帐户的第一步,因此至关重要。它应该简单易用,同时收集必要的用户信息。 * **字段设计:**表单应包含必要的字段,如用户名、电子邮件和密码。 * **验证:**表单应验证字段的格式和有效性,例如电子邮件地址的格式和密码的强度。 * **错误处理:**表单应优雅地处理验证错误,并提供清晰的错误消
recommend-type

卷积神经网络实现手势识别程序

卷积神经网络(Convolutional Neural Network, CNN)在手势识别中是一种非常有效的机器学习模型。CNN特别适用于处理图像数据,因为它能够自动提取和学习局部特征,这对于像手势这样的空间模式识别非常重要。以下是使用CNN实现手势识别的基本步骤: 1. **输入数据准备**:首先,你需要收集或获取一组带有标签的手势图像,作为训练和测试数据集。 2. **数据预处理**:对图像进行标准化、裁剪、大小调整等操作,以便于网络输入。 3. **卷积层(Convolutional Layer)**:这是CNN的核心部分,通过一系列可学习的滤波器(卷积核)对输入图像进行卷积,以
recommend-type

BSC资料.pdf

"BSC资料.pdf" 战略地图是一种战略管理工具,它帮助企业将战略目标可视化,确保所有部门和员工的工作都与公司的整体战略方向保持一致。战略地图的核心内容包括四个相互关联的视角:财务、客户、内部流程和学习与成长。 1. **财务视角**:这是战略地图的最终目标,通常表现为股东价值的提升。例如,股东期望五年后的销售收入达到五亿元,而目前只有一亿元,那么四亿元的差距就是企业的总体目标。 2. **客户视角**:为了实现财务目标,需要明确客户价值主张。企业可以通过提供最低总成本、产品创新、全面解决方案或系统锁定等方式吸引和保留客户,以实现销售额的增长。 3. **内部流程视角**:确定关键流程以支持客户价值主张和财务目标的实现。主要流程可能包括运营管理、客户管理、创新和社会责任等,每个流程都需要有明确的短期、中期和长期目标。 4. **学习与成长视角**:评估和提升企业的人力资本、信息资本和组织资本,确保这些无形资产能够支持内部流程的优化和战略目标的达成。 绘制战略地图的六个步骤: 1. **确定股东价值差距**:识别与股东期望之间的差距。 2. **调整客户价值主张**:分析客户并调整策略以满足他们的需求。 3. **设定价值提升时间表**:规划各阶段的目标以逐步缩小差距。 4. **确定战略主题**:识别关键内部流程并设定目标。 5. **提升战略准备度**:评估并提升无形资产的战略准备度。 6. **制定行动方案**:根据战略地图制定具体行动计划,分配资源和预算。 战略地图的有效性主要取决于两个要素: 1. **KPI的数量及分布比例**:一个有效的战略地图通常包含20个左右的指标,且在四个视角之间有均衡的分布,如财务20%,客户20%,内部流程40%。 2. **KPI的性质比例**:指标应涵盖财务、客户、内部流程和学习与成长等各个方面,以全面反映组织的绩效。 战略地图不仅帮助管理层清晰传达战略意图,也使员工能更好地理解自己的工作如何对公司整体目标产生贡献,从而提高执行力和组织协同性。