linux环境下查看除manager外的namespace

时间: 2023-08-26 07:04:14 浏览: 332
在 Linux 环境下,要查看除了 `manager` 以外的 namespace,可以使用 `lsns` 命令。这个命令会列出当前系统上所有的 namespace,包括 IPC、PID、Network、Mount、UTS、User、Cgroup 等。通过执行以下命令可以查看 namespace 列表: ``` lsns ``` 该命令会以表格形式显示所有的 namespace,其中第一列是 namespace 的类型,第二列是该类型的数量,第三列是命名空间的 ID,第四列是命名空间挂载点的路径。 如果你只想查看特定类型的 namespace,可以使用 `lsns -t <type>` 命令,将 `<type>` 替换为你想要查看的类型,比如 `ipc`、`pid`、`net` 等。例如,要查看所有网络命名空间,可以执行以下命令: ``` lsns -t net ``` 这样就能够查看除了 `manager` 以外的网络命名空间列表了。
相关问题

apiVersion: monitoring.coreos.com/v1 kind: Alertmanager metadata: labels: alertmanager: main name: main namespace: monitoring spec: image: quay.io/prometheus/alertmanager:v0.21.0 nodeSelector: kubernetes.io/os: linux replicas: 3 securityContext: fsGroup: 2000 runAsNonRoot: true runAsUser: 1000 serviceAccountName: alertmanager-main version: v0.21.0,解释一下每个标签的以上

apiVersion:用于指定API版本,以便将API调用发送到正确的服务器。 kind:指定API调用的资源类型。 metadata:包含标签,名称和命名空间,用于指定要操作的资源的唯一标识符。 spec:用于标识要运行的资源的详细说明,包括图像、节点选择器、副本、安全上下文、服务帐户名称和版本。

apiVersion: monitoring.coreos.com/v1 kind: Prometheus metadata: labels: prometheus: k8s name: k8s namespace: monitoring spec: alerting: alertmanagers: - name: alertmanager-main namespace: monitoring port: web image: quay.io/prometheus/prometheus:v2.20.0 nodeSelector: kubernetes.io/os: linux podMonitorNamespaceSelector: {} podMonitorSelector: {} replicas: 2 resources: requests: memory: 400Mi ruleSelector: matchLabels: prometheus: k8s role: alert-rules securityContext: fsGroup: 2000 runAsNonRoot: true runAsUser: 1000 serviceAccountName: prometheus-k8s serviceMonitorNamespaceSelector: {} serviceMonitorSelector: {} version: v2.20.0 请解释一下这个yaml文件

这是一个用于部署Prometheus监控系统的YAML文件,下面对其各部分进行解释: ``` apiVersion: monitoring.coreos.com/v1 kind: Prometheus metadata: labels: prometheus: k8s name: k8s namespace: monitoring spec: alerting: alertmanagers: - name: alertmanager-main namespace: monitoring port: web image: quay.io/prometheus/prometheus:v2.20.0 nodeSelector: kubernetes.io/os: linux podMonitorNamespaceSelector: {} podMonitorSelector: {} replicas: 2 resources: requests: memory: 400Mi ruleSelector: matchLabels: prometheus: k8s role: alert-rules securityContext: fsGroup: 2000 runAsNonRoot: true runAsUser: 1000 serviceAccountName: prometheus-k8s serviceMonitorNamespaceSelector: {} serviceMonitorSelector: {} version: v2.20.0 ``` - `apiVersion`: 定义该对象所使用的Kubernetes API版本,这里使用的是monitoring.coreos.com/v1。 - `kind`: 定义该对象的类型,这里是Prometheus类型。 - `metadata`: 定义该对象的元数据,包括名称、标签和命名空间等信息。 - `spec`: 定义该对象的具体配置信息,包括如何部署和配置Prometheus监控系统。 - `alerting`: 定义如何设置警报。这里设置了警报管理器,使用名称为`alertmanager-main`的警报管理器,并指定其所在的命名空间和Web端口。 - `image`: 定义Prometheus监控系统的镜像,这里使用了`quay.io/prometheus/prometheus:v2.20.0`。 - `nodeSelector`: 定义用于选择部署Prometheus监控系统的节点的标签。这里选择了标签为`kubernetes.io/os: linux`的节点。 - `podMonitorNamespaceSelector` 和 `podMonitorSelector`: 定义选择哪些Pod进行监控。这里未指定任何选择条件,表示将监控所有Pod。 - `replicas`: 定义Prometheus实例的副本数量,这里设置为2。 - `resources`: 定义Prometheus实例使用的资源请求量,这里设置了内存请求为400Mi。 - `ruleSelector`: 定义如何选择要应用的告警规则。这里选择了标签为`prometheus: k8s`和`role: alert-rules`的规则。 - `securityContext`: 定义Prometheus容器的安全上下文,包括运行容器的用户和组等。 - `serviceAccountName`: 指定Prometheus容器所使用的服务账户。 - `serviceMonitorNamespaceSelector` 和 `serviceMonitorSelector`: 定义选择哪些Service进行监控。这里未指定任何选择条件,表示将监控所有Service。 - `version`: 指定Prometheus的版本,这
阅读全文

相关推荐

最新推荐

recommend-type

CentOS 8.1下搭建LEMP(Linux+Nginx+MySQL+PHP)环境(教程详解)

在本教程中,我们将深入探讨如何在CentOS 8.1操作系统上搭建LEMP(Linux、Nginx、MariaDB和PHP)环境。LEMP是一个流行的服务器架构,它结合了高效的Linux操作系统、强大的Nginx Web服务器、可靠的MariaDB数据库系统...
recommend-type

linux环境下oracle备份脚本

总结,Linux环境下的Oracle备份脚本涉及到了RMAN的各种备份类型、通道管理、归档日志处理和定时任务调度。理解并正确运用这些脚本能确保数据库的定期备份,提高数据保护的可靠性。在实际操作中,应根据具体数据库...
recommend-type

Linux系统下安装android sdk的方法步骤

以下是一个详细的过程,涵盖了从下载SDK到设置环境变量,以及如何使用SDK Manager进行更新。 首先,你需要从Google的官方服务器下载Android SDK。你可以通过`wget`命令直接下载最新版本的SDK。在本例中,使用的URL...
recommend-type

Linux下RPM打包制作过程

RPM(Red Hat Package Manager)是一种广泛应用于Linux发行版的软件包管理器,它使得软件的安装、升级和卸载变得简单。 首先,为了进行RPM打包,你需要确保系统已经安装了`rpmbuild`工具。在大多数基于Red Hat的...
recommend-type

Linux(centos)下android开发环境的搭建

在Linux(CentOS)环境下搭建Android开发环境是一个必要的步骤,对于任何希望在Linux系统上进行Android应用开发的开发者来说都至关重要。以下将详细介绍这个过程。 一、Linux(CentOS)系统的安装 首先,确保你拥有...
recommend-type

平尾装配工作平台运输支撑系统设计与应用

资源摘要信息:"该压缩包文件名为‘行业分类-设备装置-用于平尾装配工作平台的运输支撑系统.zip’,虽然没有提供具体的标签信息,但通过文件标题可以推断出其内容涉及的是航空或者相关重工业领域内的设备装置。从标题来看,该文件集中讲述的是有关平尾装配工作平台的运输支撑系统,这是一种专门用于支撑和运输飞机平尾装配的特殊设备。 平尾,即水平尾翼,是飞机尾部的一个关键部件,它对于飞机的稳定性和控制性起到至关重要的作用。平尾的装配工作通常需要在一个特定的平台上进行,这个平台不仅要保证装配过程中平尾的稳定,还需要适应平尾的搬运和运输。因此,设计出一个合适的运输支撑系统对于提高装配效率和保障装配质量至关重要。 从‘用于平尾装配工作平台的运输支撑系统.pdf’这一文件名称可以推断,该PDF文档应该是详细介绍这种支撑系统的构造、工作原理、使用方法以及其在平尾装配工作中的应用。文档可能包括以下内容: 1. 支撑系统的设计理念:介绍支撑系统设计的基本出发点,如便于操作、稳定性高、强度大、适应性强等。可能涉及的工程学原理、材料学选择和整体结构布局等内容。 2. 结构组件介绍:详细介绍支撑系统的各个组成部分,包括支撑框架、稳定装置、传动机构、导向装置、固定装置等。对于每一个部件的功能、材料构成、制造工艺、耐腐蚀性以及与其他部件的连接方式等都会有详细的描述。 3. 工作原理和操作流程:解释运输支撑系统是如何在装配过程中起到支撑作用的,包括如何调整支撑点以适应不同重量和尺寸的平尾,以及如何进行运输和对接。操作流程部分可能会包含操作步骤、安全措施、维护保养等。 4. 应用案例分析:可能包含实际操作中遇到的问题和解决方案,或是对不同机型平尾装配过程的支撑系统应用案例的详细描述,以此展示系统的实用性和适应性。 5. 技术参数和性能指标:列出支撑系统的具体技术参数,如载重能力、尺寸规格、工作范围、可调节范围、耐用性和可靠性指标等,以供参考和评估。 6. 安全和维护指南:对于支撑系统的使用安全提供指导,包括操作安全、应急处理、日常维护、定期检查和故障排除等内容。 该支撑系统作为专门针对平尾装配而设计的设备,对于飞机制造企业来说,掌握其详细信息是提高生产效率和保障产品质量的重要一环。同时,这种支撑系统的设计和应用也体现了现代工业在专用设备制造方面追求高效、安全和精确的趋势。"
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

MATLAB遗传算法探索:寻找随机性与确定性的平衡艺术

![MATLAB多种群遗传算法优化](https://img-blog.csdnimg.cn/39452a76c45b4193b4d88d1be16b01f1.png) # 1. 遗传算法的基本概念与起源 遗传算法(Genetic Algorithm, GA)是一种模拟自然选择和遗传学机制的搜索优化算法。起源于20世纪60年代末至70年代初,由John Holland及其学生和同事们在研究自适应系统时首次提出,其理论基础受到生物进化论的启发。遗传算法通过编码一个潜在解决方案的“基因”,构造初始种群,并通过选择、交叉(杂交)和变异等操作模拟生物进化过程,以迭代的方式不断优化和筛选出最适应环境的
recommend-type

如何在S7-200 SMART PLC中使用MB_Client指令实现Modbus TCP通信?请详细解释从连接建立到数据交换的完整步骤。

为了有效地掌握S7-200 SMART PLC中的MB_Client指令,以便实现Modbus TCP通信,建议参考《S7-200 SMART Modbus TCP教程:MB_Client指令与功能码详解》。本教程将引导您了解从连接建立到数据交换的整个过程,并详细解释每个步骤中的关键点。 参考资源链接:[S7-200 SMART Modbus TCP教程:MB_Client指令与功能码详解](https://wenku.csdn.net/doc/119yes2jcm?spm=1055.2569.3001.10343) 首先,确保您的S7-200 SMART CPU支持开放式用户通
recommend-type

MAX-MIN Ant System:用MATLAB解决旅行商问题

资源摘要信息:"Solve TSP by MMAS: Using MAX-MIN Ant System to solve Traveling Salesman Problem - matlab开发" 本资源为解决经典的旅行商问题(Traveling Salesman Problem, TSP)提供了一种基于蚁群算法(Ant Colony Optimization, ACO)的MAX-MIN蚁群系统(MAX-MIN Ant System, MMAS)的Matlab实现。旅行商问题是一个典型的优化问题,要求找到一条最短的路径,让旅行商访问每一个城市一次并返回起点。这个问题属于NP-hard问题,随着城市数量的增加,寻找最优解的难度急剧增加。 MAX-MIN Ant System是一种改进的蚁群优化算法,它在基本的蚁群算法的基础上,对信息素的更新规则进行了改进,以期避免过早收敛和局部最优的问题。MMAS算法通过限制信息素的上下界来确保算法的探索能力和避免过早收敛,它在某些情况下比经典的蚁群系统(Ant System, AS)和带有局部搜索的蚁群系统(Ant Colony System, ACS)更为有效。 在本Matlab实现中,用户可以通过调用ACO函数并传入一个TSP问题文件(例如"filename.tsp")来运行MMAS算法。该问题文件可以是任意的对称或非对称TSP实例,用户可以从特定的网站下载多种标准TSP问题实例,以供测试和研究使用。 使用此资源的用户需要注意,虽然该Matlab代码可以免费用于个人学习和研究目的,但若要用于商业用途,则需要联系作者获取相应的许可。作者的电子邮件地址为***。 此外,压缩包文件名为"MAX-MIN%20Ant%20System.zip",该压缩包包含Matlab代码文件和可能的示例数据文件。用户在使用之前需要将压缩包解压,并将文件放置在Matlab的适当工作目录中。 为了更好地理解和应用该资源,用户应当对蚁群优化算法有初步了解,尤其是对MAX-MIN蚁群系统的基本原理和运行机制有所掌握。此外,熟悉Matlab编程环境和拥有一定的编程经验将有助于用户根据个人需求修改和扩展算法。 在实际应用中,用户可以根据问题规模调整MMAS算法的参数,如蚂蚁数量、信息素蒸发率、信息素增量等,以获得最优的求解效果。此外,也可以结合其他启发式或元启发式算法,如遗传算法、模拟退火等,来进一步提高算法的性能。 总之,本资源为TSP问题的求解提供了一种有效的算法框架,且Matlab作为编程工具的易用性和强大的计算能力,使得该资源成为算法研究人员和工程技术人员的有力工具。通过本资源的应用,用户将能够深入探索并实现蚁群优化算法在实际问题中的应用,为解决复杂的优化问题提供一种新的思路和方法。