通过csv的权值矩阵直接生产netdrawx的graph
时间: 2024-05-01 07:16:56 浏览: 84
可以使用Python中的pandas和networkx库来实现。
首先,读入csv文件并将其转换为pandas DataFrame:
```
import pandas as pd
df = pd.read_csv('matrix.csv', index_col=0)
```
接着,将DataFrame转换为权值字典:
```
weights = df.to_dict('index')
```
然后,使用networkx库创建图并添加节点和边:
```
import networkx as nx
G = nx.Graph()
# 添加节点
for node in df.index:
G.add_node(node)
# 添加边
for source, targets in weights.items():
for target, weight in targets.items():
G.add_edge(source, target, weight=weight)
```
最后,使用netdrawx库将图渲染为可视化图形:
```
import netdrawx as ndx
# 渲染图形
ndx.draw(G)
```
完整代码如下:
```
import pandas as pd
import networkx as nx
import netdrawx as ndx
# 读入csv文件
df = pd.read_csv('matrix.csv', index_col=0)
# 转换为权值字典
weights = df.to_dict('index')
# 创建图并添加节点和边
G = nx.Graph()
for node in df.index:
G.add_node(node)
for source, targets in weights.items():
for target, weight in targets.items():
G.add_edge(source, target, weight=weight)
# 渲染图形
ndx.draw(G)
```
阅读全文