word2vec计算文本相似度代码
时间: 2023-08-03 09:41:40 浏览: 133
这是一个简单的使用word2vec计算文本相似度的代码示例:
```python
from gensim.models import Word2Vec
import numpy as np
def get_word2vec_similarity(text1, text2, model_path):
# 加载预训练的Word2Vec模型
model = Word2Vec.load(model_path)
# 对文本进行分词
words1 = text1.strip().split()
words2 = text2.strip().split()
# 计算文本向量的平均值
vec1 = np.mean([model.wv[word] for word in words1 if word in model.wv], axis=0)
vec2 = np.mean([model.wv[word] for word in words2 if word in model.wv], axis=0)
# 计算余弦相似度
similarity = np.dot(vec1, vec2) / (np.linalg.norm(vec1) * np.linalg.norm(vec2))
return similarity
```
示例中使用了gensim库中的Word2Vec模型,并计算了两个文本的余弦相似度。需要注意的是,为了使用该代码,需要先对文本进行分词,并且预训练的Word2Vec模型需要先通过gensim进行训练。
阅读全文