写一个对Fruit 360数据集预处理的python代码
时间: 2024-05-13 15:20:45 浏览: 63
由于没有具体的数据集文件,我将以一般的数据集预处理流程举例进行代码编写。
```python
import os
import numpy as np
from PIL import Image
# 定义数据集路径
data_path = 'path/to/fruit360/dataset'
# 定义类别数和图像大小
num_classes = 10
img_size = 224
# 定义训练集和测试集的图像和标签
x_train = []
y_train = []
x_test = []
y_test = []
# 遍历数据集文件夹,获取图像和标签
for i in range(num_classes):
# 训练集文件夹路径
train_path = os.path.join(data_path, 'train', str(i))
# 测试集文件夹路径
test_path = os.path.join(data_path, 'test', str(i))
# 遍历训练集文件夹,获取图像和标签
for img_file in os.listdir(train_path):
img_path = os.path.join(train_path, img_file)
img = Image.open(img_path)
img = img.resize((img_size, img_size))
img = np.array(img) / 255.0
x_train.append(img)
y_train.append(i)
# 遍历测试集文件夹,获取图像和标签
for img_file in os.listdir(test_path):
img_path = os.path.join(test_path, img_file)
img = Image.open(img_path)
img = img.resize((img_size, img_size))
img = np.array(img) / 255.0
x_test.append(img)
y_test.append(i)
# 转换为numpy数组
x_train = np.array(x_train)
y_train = np.array(y_train)
x_test = np.array(x_test)
y_test = np.array(y_test)
# 打乱训练集
indices = np.arange(x_train.shape[0])
np.random.shuffle(indices)
x_train = x_train[indices]
y_train = y_train[indices]
# 打印数据集信息
print('训练集形状:', x_train.shape)
print('测试集形状:', x_test.shape)
print('训练集标签:', y_train)
print('测试集标签:', y_test)
```
以上代码实现了对Fruit 360数据集的预处理,包括读取图像、调整大小、标准化、转换为numpy数组、打乱顺序等操作。在实际应用中,可能需要根据具体的数据集进行一些修改。
阅读全文