如何使用transforms.normalize()函数处理py张量数据
时间: 2024-09-29 09:06:58 浏览: 82
在PyTorch中,`torch.nn.functional.normalize()` 函数用于归一化张量数据,通常应用于深度学习模型中,例如神经网络的输入特征或权重矩阵。这个函数可以按照指定的方式(L1、L2范数或其他自定义)将张量元素缩放到一定的范围内,使其在整个批次或通道维度上具有单位范数。
以下是基本的用法:
```python
import torch
from torch.nn import functional as F
# 假设你有一个 PyTorch 张量 tensor,可能是输入特征或者模型的权重
tensor = torch.tensor([[1., 2., 3.], [4., 5., 6.]]) # 归一化前的张量
# 对整个张量进行 L2 归一化
normalized_tensor = F.normalize(tensor, p=2, dim=1) # 第二个参数dim指定了沿哪个维度进行归一化
# 或者只对最后一维进行归一化(如果张量是多维的话)
normed = F.normalize(tensor, p=2, dim=-1)
# 输出的 normalized_tensor 中,每个样本都会沿着指定维度标准化到长度为1的向量
```
相关问题
import os import json import torch import torch.nn as nn import torch.optim as optim from torchvision import transforms, datasets from tqdm import tqdm from model import resnet34 def main(): device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") print("using {} device.".format(device)) data_transform = { "train": transforms.Compose([transforms.RandomResizedCrop(224), transforms.RandomHorizontalFlip(), transforms.ToTensor(), transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])]), "val": transforms.Compose([transforms.Resize(256), transforms.CenterCrop(224), transforms.ToTensor(), transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])])}
这段代码中,首先引入了需要使用的库,包括os、json、torch、torch.nn、torch.optim、transforms、datasets和tqdm。然后定义了一个名为main的函数,这个函数包含以下几个步骤:
1. 判断是否可以使用CUDA加速,如果可以则使用CUDA,否则使用CPU。
2. 定义数据预处理的方法,包括在训练时进行随机裁剪、随机水平翻转、转换为张量、将像素值标准化等操作;在验证时进行大小调整、中心裁剪、转换为张量、将像素值标准化等操作。
在这段代码中,还用到了之前建立的模型,即从model.py文件中导入了resnet34模型。
yolov7的transforms.py代码
以下是YOLOv7中transforms.py的代码:
```python
import torch
import numpy as np
import cv2
class RandomSize:
def __init__(self, mode='range', size=0.2):
self.mode = mode
self.size = size
def __call__(self, img, targets=None):
if self.mode == 'range':
rand_size = np.random.uniform(-self.size, self.size)
elif self.mode == 'value':
rand_size = self.size
else:
raise AttributeError("mode should be 'range' or 'value', but got {}".format(self.mode))
height, width, _ = img.shape
scale = 1 + rand_size
new_height, new_width = int(height * scale), int(width * scale)
img = cv2.resize(img, (new_width, new_height))
if targets is not None:
targets[:, [1, 3]] *= (new_width / width)
targets[:, [2, 4]] *= (new_height / height)
return img, targets
class RandomHSV:
def __init__(self, hgain=0.5, sgain=0.5, vgain=0.5):
self.hgain = hgain
self.sgain = sgain
self.vgain = vgain
def __call__(self, img, targets=None):
hsv = cv2.cvtColor(img, cv2.COLOR_BGR2HSV)
h, s, v = cv2.split(hsv)
h = cv2.add(h, np.uint8(255 * self.hgain * np.random.uniform(-1, 1)))
s = cv2.add(s, np.uint8(255 * self.sgain * np.random.uniform(-1, 1)))
v = cv2.add(v, np.uint8(255 * self.vgain * np.random.uniform(-1, 1)))
hsv = cv2.merge((h, s, v))
img = cv2.cvtColor(hsv, cv2.COLOR_HSV2BGR)
return img, targets
class RandomBlur:
def __init__(self, kernel_size=3):
self.kernel_size = kernel_size
def __call__(self, img, targets=None):
if np.random.random() < 0.5:
img = cv2.blur(img, (self.kernel_size, self.kernel_size))
return img, targets
class RandomNoise:
def __init__(self, mean=0, var=0.1):
self.mean = mean
self.var = var
def __call__(self, img, targets=None):
noise = np.zeros_like(img)
cv2.randn(noise, self.mean, self.var)
img = cv2.add(img, noise)
return img, targets
class Resize:
def __init__(self, size):
self.size = size
def __call__(self, img, targets=None):
height, width, _ = img.shape
new_height, new_width = self.size, self.size
img = cv2.resize(img, (new_width, new_height))
if targets is not None:
targets[:, [1, 3]] *= (new_width / width)
targets[:, [2, 4]] *= (new_height / height)
return img, targets
class Letterbox:
def __init__(self, size, color=(114, 114, 114)):
self.size = size
self.color = color
def __call__(self, img, targets=None):
height, width, _ = img.shape
new_height, new_width = self.size, self.size
scale = min(new_height / height, new_width / width)
h, w = int(scale * height), int(scale * width)
img = cv2.resize(img, (w, h))
top = (new_height - h) // 2
bottom = new_height - h - top
left = (new_width - w) // 2
right = new_width - w - left
img = cv2.copyMakeBorder(img, top, bottom, left, right, cv2.BORDER_CONSTANT, value=self.color)
if targets is not None:
targets[:, [1, 3]] *= (w / width)
targets[:, [2, 4]] *= (h / height)
targets[:, [1, 3]] += left
targets[:, [2, 4]] += top
return img, targets
class RandomFlip:
def __init__(self, prob=0.5):
self.prob = prob
def __call__(self, img, targets=None):
if np.random.random() < self.prob:
img = cv2.flip(img, 1)
if targets is not None:
targets[:, 1] = 1 - targets[:, 1]
return img, targets
class Normalize:
def __init__(self, mean=[0, 0, 0], std=[1, 1, 1], to_rgb=True):
self.mean = mean
self.std = std
self.to_rgb = to_rgb
def __call__(self, img, targets=None):
if self.to_rgb:
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
img = img.astype(np.float32) / 255.
img -= np.array(self.mean)
img /= np.array(self.std)
return img, targets
class ToTensor:
def __call__(self, img, targets=None):
img = img.transpose(2, 0, 1)
img = torch.from_numpy(img).float()
if targets is not None:
targets = torch.from_numpy(targets).float()
return img, targets
class Compose:
def __init__(self, transforms):
self.transforms = transforms
def __call__(self, img, targets):
for t in self.transforms:
img, targets = t(img, targets)
return img, targets
```
这个文件包含了一系列的数据增强函数,用于对输入图像进行处理,从而提高模型的鲁棒性和泛化能力。其中包括随机缩放、随机HSV变换、随机模糊、随机噪声、尺寸变换、letterbox变换、随机翻转、归一化和转换为张量等操作。这些函数可以根据需要进行灵活组合和选择,以便达到最佳的效果。
阅读全文