跨孔层析成像 反演C++算法
时间: 2023-10-12 13:55:25 浏览: 143
跨孔层析成像是一种用于估计地下介质的成像方法,通过分析多个探测器之间的传播路径和接收到的信号来重建地下介质的物理属性。下面是一个基本的C++算法实现:
```cpp
#include <iostream>
#include <vector>
#include <cmath>
// 定义地下介质属性结构体
struct MediumProperties {
double velocity; // 速度
double density; // 密度
};
// 生成模拟数据
std::vector<double> generateSimulatedData(std::vector<double>& sourcePositions, std::vector<double>& receiverPositions, std::vector<MediumProperties>& mediumProperties) {
std::vector<double> simulatedData;
// 计算传播时间
for (int i = 0; i < sourcePositions.size(); i++) {
for (int j = 0; j < receiverPositions.size(); j++) {
double distance = std::abs(sourcePositions[i] - receiverPositions[j]);
double travelTime = distance / mediumProperties[i].velocity;
simulatedData.push_back(travelTime);
}
}
return simulatedData;
}
// 反演成像
std::vector<MediumProperties> inversion(std::vector<double>& sourcePositions, std::vector<double>& receiverPositions, std::vector<double>& observedData) {
std::vector<MediumProperties> mediumProperties;
// 初始化介质属性
int numLayers = sourcePositions.size();
for (int i = 0; i < numLayers; i++) {
MediumProperties properties;
properties.velocity = 2000.0;
properties.density = 2000.0;
mediumProperties.push_back(properties);
}
// 最小二乘法迭代
int maxIterations = 100;
double epsilon = 1e-6;
for (int iteration = 0; iteration < maxIterations; iteration++) {
// 生成模拟数据
std::vector<double> simulatedData = generateSimulatedData(sourcePositions, receiverPositions, mediumProperties);
// 计算当前误差
double error = 0.0;
for (int i = 0; i < observedData.size(); i++) {
error += std::pow(observedData[i] - simulatedData[i], 2);
}
// 判断是否收敛
if (error < epsilon) {
break;
}
// 更新介质属性
for (int i = 0; i < numLayers; i++) {
double deltaVelocity = 0.0;
double deltaDensity = 0.0;
for (int j = 0; j < observedData.size(); j++) {
double distance = std::abs(sourcePositions[j / receiverPositions.size()] - receiverPositions[j % receiverPositions.size()]);
double predictedTime = distance / mediumProperties[i].velocity;
deltaVelocity += 2 * (simulatedData[j] - observedData[j]) * predictedTime / std::pow(mediumProperties[i].velocity, 2);
deltaDensity += 2 * (simulatedData[j] - observedData[j]) * predictedTime / std::pow(mediumProperties[i].velocity, 3);
}
mediumProperties[i].velocity -= deltaVelocity;
mediumProperties[i].density -= deltaDensity;
}
}
return mediumProperties;
}
int main() {
// 定义源和接收器位置
std::vector<double> sourcePositions = {-100.0, 0.0, 100.0};
std::vector<double> receiverPositions = {-200.0, -100.0, 0.0, 100.0, 200.0};
// 生成观测数据
std::vector<double> observedData = {1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0, 12.0};
// 进行反演成像
std::vector<MediumProperties> estimatedProperties = inversion(sourcePositions, receiverPositions, observedData);
// 输出估计的介质属性
std::cout << "估计的介质属性:" << std::endl;
for (int i = 0; i < estimatedProperties.size(); i++) {
std::cout << "Layer " << i+1 << ": velocity = " << estimatedProperties[i].velocity << ", density = " << estimatedProperties[i].density << std::endl;
}
return 0;
}
```
在这个示例代码中,我们定义了一个 `MediumProperties` 结构体来存储地下介质的速度和密度属性。首先,我们定义了一个 `generateSimulatedData` 函数来生成模拟数据,该函数根据源位置、接收器位置和介质属性计算传播时间。然后,在 `inversion` 函数中,我们使用最小二乘法进行反演成像。在最小二乘法的迭代过程中,我们根据当前介质属性生成模拟数据,并计算误差。然后,根据误差更新介质属性,直到满足收敛条件。最后,在 `main` 函数中,我们定义了源和接收器的位置、观测数据,并调用 `inversion` 函数进行反演成像,输出估计的介质属性。
请注意,这只是一个基本的示例代码,实际的跨孔层析成像反演可能涉及到更复杂的算法和数据处理。你可以根据你的具体需求,对这个算法进行适当的修改和扩展。
阅读全文