用粒子群优化做相机标定的python代码链接
时间: 2023-01-31 21:24:26 浏览: 133
粒子群优化代码
您好,这是一个使用粒子群优化进行相机标定的 Python 代码示例:
```python
import numpy as np
import matplotlib.pyplot as plt
from scipy.optimize import minimize
# 相机标定所需的观测数据
x_measured = np.array([0.5, 0.5, 1.5, 1.5, 2.5, 2.5, 3.5, 3.5])
y_measured = np.array([0.5, 1.5, 0.5, 1.5, 0.5, 1.5, 0.5, 1.5])
z_measured = np.array([0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5])
# 在相机坐标系中的真实位置
x_real = np.array([1, 1, 2, 2, 3, 3, 4, 4])
y_real = np.array([1, 2, 1, 2, 1, 2, 1, 2])
z_real = np.array([1, 1, 1, 1, 1, 1, 1, 1])
# 相机内参
f = 1
u0 = 0
v0 = 0
# 定义残差函数
def residuals(p):
[alpha, beta, gamma, u, v, w] = p
x_predicted = f * (x_real - u) / (z_real - w)
y_predicted = f * (y_real - v) / (z_real - w)
r = np.sqrt((x_predicted - x_measured)**2 + (y_predicted - y_measured)**2)
return r
# 定义粒子群优化函数
def optimize_pso(func, x0, bounds, num_particles, num_iterations):
# 定义粒子
class Particle:
def __init__(self, bounds):
self.position = np.array([uniform(bounds[i][0], bounds[i][1]) for i in range(len(bounds))])
self.pbest_position = self.position
self.pbest_value = float('inf')
self.velocity = np.array([0 for i in range(len(bounds))])
def update(self, gbest_position, bounds):
self.velocity = self.velocity + 2 * uniform(0, 1) * (self.pbest_position - self.position) + 2 * uniform(0, 1) * (gbest_position - self.position)
self.position = self.position + self.velocity
for i in range(len(bounds)):
if self.position[i] > bounds
阅读全文