mg = cv2.resize(img0, [model_w,model_h], interpolation=cv2.INTER_AREA) img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) img = img.astype(np.float32) / 255.0 blob = np.expand_dims(np.transpose(img, (2, 0, 1)), axis=0)
时间: 2024-04-01 15:37:09 浏览: 103
这段代码是用Python中OpenCV库对图像进行预处理的操作,具体解释如下:
- 首先,使用cv2.resize()函数将原始图像img0调整为指定大小(model_w, model_h),并采用INTER_AREA插值算法进行图像的缩放。
- 然后,使用cv2.cvtColor()函数将缩放后的图像从BGR颜色空间转换为RGB颜色空间。
- 接下来,使用astype()函数将像素值转换为浮点型,并将像素值归一化到0~1之间。
- 最后,使用np.transpose()函数将图像矩阵按照通道数、行、列的顺序进行转置,使其满足神经网络输入数据的格式要求,并使用np.expand_dims()函数将其扩展为4维张量,即(batch_size, channel, height, width)的形式。
这样处理后,图像就可以作为神经网络模型的输入,并进行后续的推理操作。
相关问题
import cv2 import random import numpy as np img=cv2.imread("D:/CV_data/test/resize/1.jpg") percent =rand_point_percent=0.03 num = int(percent * img.shape[0] * img.shape[1]) for i in range(num): rand_x = random.randint(0, img.shape[0] - 1) rand_y = random.randint(0, img.shape[1] - 1) if random.randint(0, 1) == 0: img[rand_x, rand_y] = 0 else: img[rand_x, rand_y] = 255 cv2.imshow("output",img) cv2.waitKey() cv2.destroyAllWindows()
这段代码使用了OpenCV库进行图像处理。首先,通过cv2.imread函数读取了一张图片。然后,定义了一个变量percent表示随机点的比例,rand_point_percent表示随机点的比例。接着,计算了需要生成的随机点的数量num。然后,通过循环生成num个随机点,其中rand_x和rand_y分别表示随机点的横坐标和纵坐标。通过random.randint函数生成0到img.shape[0]-1和0到img.shape[1]-1之间的随机整数作为坐标值。如果random.randint(0, 1)的结果为0,则将对应位置的像素值设置为0,否则设置为255。最后,通过cv2.imshow函数显示处理后的图像,并通过cv2.waitKey和cv2.destroyAllWindows函数等待并关闭窗口。
请注意确保图像路径正确,并且已经安装了cv2和numpy库。如果有任何问题,请及时提出。
import torch import numpy as np from torchvision import datasets, models, transforms from torchvision import transforms from PIL import Image transform = transforms.Compose([ transforms.Resize((28, 28), interpolation=2), transforms.ToTensor() ] ) a=np.load('./original_crystal_2d_graphs/mp-170_copy1_opt.vasp_subst_O-Se_V-Bi.npy') img = a[0:3, :] #数组形式 im = Image.fromarray(img) # img = Image.open(im) img_ = transform(im).unsqueeze(0) #拓展维度 img_.show()
这段代码的作用是,导入了PyTorch、NumPy和torchvision等工具库,并指定了一组数据转换操作(修改为28x28尺寸并转换为张量格式)。然后,使用NumPy库读取了一个二维晶体图形的数据,并取出前三行作为图像数据。
阅读全文
相关推荐

















